IBM iDataPlex/FDR-IB

Yellowstone
Manufacturer: 
IBM
Clock Speed: 
2.60GHz
Dates Used: 
Saturday, September 15, 2012 to Thursday, July 28, 2016
Microprocessor Peak Teraflops: 
1 503.59
Memory (terabytes): 
144.54TB
Number of Processors: 
72 288.00
Electrical Power Consumption: 
1 900.00 kW
Experimental/Production: 
Production

Quick facts

  • One petaflop is one quadrillion (1,000,000,000,000,000) floating point operations per second, which is approximately 143,000 calculations per second for every man, woman, and child on Earth.
  • At 1.6 petaflops, Yellowstone will be capable of more than 221,000 calculations per second for every person on Earth.
  • The Yellowstone system features 9.7 million times the computational rate, 3.4 million times the disk capacity, and 19 million times the central memory size of one of the world’s first supercomputers, the Cray 1-A, which supported NCAR’s computational science between 1977 and 1989.

Yellowstone is expected to deliver 1.6 petaflops performance, or nearly 30 times the capacity of the system currently in use at NCAR’s Mesa Laboratory in Boulder, known as bluefire. Petaflops refers to a machine’s ability to perform one quadrillion calculations, called floating point operations (FLOPS), per second.

Scientists will use these advanced computing resources to understand complex processes in the atmosphere and throughout the Earth system, and to accelerate research into climate change, severe weather, geomagnetic storms, carbon sequestration, aviation safety, wildfires, and other critical geoscience topics.

“Yellowstone will provide needed computing resources to greatly improve our understanding of Earth and produce significant benefits to society,” says Anke Kamrath, director of operations and services for NCAR’s Computational and Information Systems Laboratory (CISL). “We are very pleased to have such a high-performance system inaugurate the new supercomputing center.”

“The vision for Yellowstone parallels the principles that have guided the design of the NWSC,” says NCAR director Roger Wakimoto. “In both instances, we have taken an approach that maximizes the science we can do and the benefit of that science to society.”

The NWSC is the result of a partnership between NCAR; the University of Wyoming; the State of Wyoming; Cheyenne LEADS; the Wyoming Business Council; Cheyenne Light, Fuel and Power; and the University Corporation for Atmospheric Research. NCAR is sponsored by the National Science Foundation.

The facility, located in the North Range Business Park in Cheyenne, Wyoming, was designed with sustainability and flexibility in mind so it can be easily adapted to future technologies and changing requirements in scientific computing. Construction and commissioning was completed last month.

Yellowstone is an IBM iDataPlex supercomputer system, consisting of Intel Sandy Bridge EP processors and a Mellanox FDR InfiniBand full fat tree. It will have 149.2 terabytes of memory, 74,592 processor cores, and a peak computational rate of 1.6 petaflops.

The central file and data storage resource will consist of file system servers and storage devices that are linked to the data analysis and visualization (DAV) resources and to the supercomputer systems. These centralized file systems will allow scientists to generate model output on the supercomputer and then analyze or visualize it on the DAV resource, without the usual bottleneck when moving such large quantities of data between separate systems.

Yellowstone’s central file system will have nearly 17 petabytes of usable disk space, 12 times what is available to NCAR’s scientific research community today.

The DAV resource is made up of two systems, one designed to facilitate large-scale data analysis, and the other for parallel processing and visualization activities.