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Basic Premise

Goal: solve —V2u = f on the surface of a sphere.

Why?
o Eventually will solve global Shallow Water equations in

vorticity-divergence form.
@ Vorticity and divergence related to stream functions / velocity

potentials via Laplace operator.

How?
@ Spectral Element Method on the cubed sphere.
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Spectral Element Method

@ Partition spatial domain into elements Q€.
© Solve in weak form: multiply by a test function and integrate
over each element.

= / (V2u)pdQ = / fodQ

@ Looking for an approximate solution up(x,y) ~ u(x,y) in a
finite-dimensional function space.
o Let Vi = {v(x,y) : v(x,¥) = pn(x)gqn(y)}, where p, and gy
are polynomials of degree < n.
o Functions in V, must be continuous over element boundaries.
@ Both up and ¢ are in Vp.
@ Also need a quadrature rule for evaluating integrals: the
Gauss-Lobatto-Legendre rule is used in both x and y
— GLL nodes affinely mapped to elements define grid
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More SEM Set-up (Spatial Discretization)

o Gaussian Quadrature: f_ll w(x)p(x)dx = > wip(x;)
GLL: w(x) =1, x%=-1,x,=1
@ Interpolation: two options for basis functions

4th Degree Lagrange Basis Functions

Legendre Polynomials (Degree <=4)

-1 -0.5 0 0.5 1
X

Nodal expansion (Lagrange basis) Modal expansion (Legendre basis)

mes)={ o 15 9% 3 1,9
F(x) = 5 Fa)h )

fi = [1, F()Li(x)dx
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Cubed Sphere Basics

How can this methodology be extended to a spherical domain?

To use rectangular elements, turn to cubed sphere.

Cube Sphere Set-up

© A cube is inscribed in a sphere
@ Points on the surface of the cube
are projected onto the sphere
@ Gnomic / central projection
(ray from center to surface of
sphere)
© Each face is tiled with elements
as in the 2D case

In the figure above, each face of the cube has a 4 x 4 element grid
with a 6 x 6 GLL grid.
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Mapping Vectors Between the Sphere and the Cube

For a sphere of radius a:

@ On each face, the metric tensor gj; is given by

a2 1+ tan?x! — tan x! tan x?
8ij )

T Pcos2xlcos?x? | —tanxltanx? 1+ tan?x?
where p = (1 + tan?® x! + tan? x?)1/2,

@ Defining the matrix A by

A cos 0 ON/Oxt  cosf ON/Ox?
—7 99/0x! 80/0x2 |’

where (x!, x?) are the cartesian coordinates on the face of the
cube, it follows that ATA = 8ij-
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Laplacian Operator on the Cubed Sphere

In spherical coordinates, the Laplacian is given on the surface of a

sphere by
1 2
V2u=V -Vu= cos@%]—i-iau J

1
a? COSH%[ a2 cos?  ON2

On the surface of the cubed sphere, with V, = (9/0x%,0/0x2)T,
1
V&

L cos? x2).

where g = det(gjj) = /g = a?/(p> cos? x! cos® x

Viy=—V,- [\/EA_IA_TVgu], J
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Weak Form

(1) So the problem to solve is

1
——V;g- [ gATIATTVY u] =f.
N Ve g
(2) Or, slightly re-arranging terms,
~Vg - [\/EA_IA_TVgu] = /g J

(3) The first step is to cast in weak form:

- / A [\/EA_lA_TVgu} PdQ = / fo/gdQ.
Qe Qe
(4) Integrating by parts simplifies the calculations:

/ e(A_TVgu) (ATTV,6)/EdQ = /Q f/gdQ. J
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Quadrature

Letting ¢(x1, x?) = hp(x1)hg(x?) for p,q € {1,..., N}, and
applying the GLL quadrature to the weak form, results in the linear
system

Keu® = M°ef¢,
where u€ and f€ are vectors containing the nodal coefficients of u
and f on Q€ respectively.

The solution must be continuous across element boundaries, and
this is enforced by using global assembly to construct a global
system: K = A\, K¢, M = A\, M€ and the system

Ku = Mf

is solved using the conjugate gradient method.
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Test Problem

If u=sin(\)cos(d) + C then —V2u = 2sin(\) cos(#)/a>. Working
backwards, the test problem solved is

v, 2sin()\)2cos(9) J

The numerical solution uy is compared to the true solution
u =sin(A) cos(f) + C. The GLL quadrature rule is used to
calculate the relative L2 error:

. Jo(u — up)?/8dS2 1/2
Jo u?\/8dQ
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Contour Plots

Numerical Solution True Solution

Contour plot of up. Contour plot of u.

For both plots, each face of the cube sphere had a 6 x 6 grid of
elements and each element had a 4 x 4 GLL grid.
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Error Plots
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The p-error is measured by leaving
the number of elements constant
but increasing the number of nodes
per element.
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Future Work

@ Parallelization: this method is expensive, but fairly local so it
should scale well.

© Preconditioning: The conjugate gradient method is
converging slowly for bigger grids / more elements; a diagonal
preconditioner has been implemented but a better option may
be needed.

© Shallow Water Model: the work presented here, combined
with an advection solver, will provide a high-order method for
solving the shallow water equations (more at PDEs on a
Sphere '07).
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