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Basic Premise

Goal: solve −∇2u = f on the surface of a sphere.

Why?

Eventually will solve global Shallow Water equations in
vorticity-divergence form.
Vorticity and divergence related to stream functions / velocity
potentials via Laplace operator.

How?

Spectral Element Method on the cubed sphere.
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Spectral Element Method

1 Partition spatial domain into elements Ωe .
2 Solve in weak form: multiply by a test function and integrate

over each element.

−
∫

Ωe

(

∇2u
)

φdΩ =

∫

Ωe

f φdΩ

2D Basics

Looking for an approximate solution uh(x , y) ≈ u(x , y) in a
finite-dimensional function space.

Let Vh = {v(x , y) : v(x , y) = pn(x)qn(y)}, where pn and qn

are polynomials of degree ≤ n.

Functions in Vh must be continuous over element boundaries.
Both uh and φ are in Vh.

Also need a quadrature rule for evaluating integrals: the
Gauss-Lobatto-Legendre rule is used in both x and y

=⇒ GLL nodes affinely mapped to elements define grid
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More SEM Set-up (Spatial Discretization)

Gaussian Quadrature:
∫ 1

−1
ω(x)p(x)dx =

∑n
i=0 wip(xi)

GLL: ω(x) ≡ 1, x0 = −1, xn = 1

Interpolation: two options for basis functions
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Nodal expansion (Lagrange basis)

hi (xj) =

{

1 i = j

0 i 6= j

f (x) ≈∑ f (xi )hi (x)
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Legendre Polynomials (Degree <=4)
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Modal expansion (Legendre basis)

f (x) ≈
∑

i

fiLi(x)

fi =
∫ 1

−1
f (x)Li (x)dx
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Cubed Sphere Basics

How can this methodology be extended to a spherical domain?

To use rectangular elements, turn to cubed sphere.

Cube Sphere Set-up

1 A cube is inscribed in a sphere
2 Points on the surface of the cube

are projected onto the sphere

Gnomic / central projection
(ray from center to surface of
sphere)

3 Each face is tiled with elements
as in the 2D case

In the figure above, each face of the cube has a 4 × 4 element grid
with a 6 × 6 GLL grid.
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Mapping Vectors Between the Sphere and the Cube

For a sphere of radius a:

On each face, the metric tensor gij is given by

gij =
a2

ρ4 cos2 x1 cos2 x2

[

1 + tan2 x1 − tan x1 tan x2

− tan x1 tan x2 1 + tan2 x2

]

,

where ρ = (1 + tan2 x1 + tan2 x2)1/2.

Defining the matrix A by

A = a

[

cos θ ∂λ/∂x1 cos θ ∂λ/∂x2

∂θ/∂x1 ∂θ/∂x2

]

,

where (x1, x2) are the cartesian coordinates on the face of the
cube, it follows that ATA = gij .
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Laplacian Operator on the Cubed Sphere

In spherical coordinates, the Laplacian is given on the surface of a
sphere by

∇2u = ∇ · ∇u =
1

a2 cos θ

∂

∂θ

[

cos θ
∂u

∂θ

]

+
1

a2 cos2 θ

∂2u

∂λ2

On the surface of the cubed sphere, with ∇g = (∂/∂x1, ∂/∂x2)T ,

∇2u =
1√
g
∇g ·

[√
gA−1A−T∇gu

]

,

where g = det(gij ) =⇒ √
g = a2/(ρ3 cos2 x1 cos2 x2).
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Weak Form

(1) So the problem to solve is

− 1√
g
∇g ·

[√
gA−1A−T∇gu

]

= f .

(2) Or, slightly re-arranging terms,

−∇g ·
[√

gA−1A−T∇gu

]

= f
√

g .

(3) The first step is to cast in weak form:

−
∫

Ωe

∇g ·
[√

gA−1A−T∇gu

]

φdΩ =

∫

Ωe

f φ
√

gdΩ.

(4) Integrating by parts simplifies the calculations:
∫

Ωe

(A−T∇gu) · (A−T∇gφ)
√

gdΩ =

∫

Ωe

f φ
√

gdΩ.
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Quadrature

Letting φ(x1, x2) = hp(x
1)hq(x2) for p, q ∈ {1, . . . ,N}, and

applying the GLL quadrature to the weak form, results in the linear
system

K eue = Mefe ,

where ue and fe are vectors containing the nodal coefficients of u

and f on Ωe , respectively.

The solution must be continuous across element boundaries, and
this is enforced by using global assembly to construct a global
system: K =

∧

e K e , M =
∧

e Me and the system

Ku = Mf

is solved using the conjugate gradient method.
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Test Problem

If u = sin(λ) cos(θ) + C then −∇2u = 2 sin(λ) cos(θ)/a2. Working
backwards, the test problem solved is

−∇2u =
2 sin(λ) cos(θ)

a2

The numerical solution uh is compared to the true solution
u = sin(λ) cos(θ) + C . The GLL quadrature rule is used to
calculate the relative L2 error:

ε =

(

∫

Ω
(u − uh)

2√gdΩ
∫

Ω
u2
√

gdΩ

)1/2
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Contour Plots

Numerical Solution

Contour plot of uh.

True Solution

Contour plot of u.

For both plots, each face of the cube sphere had a 6 × 6 grid of
elements and each element had a 4 × 4 GLL grid.
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Error Plots

6 24 96 384 1536
10

−12

10
−9

10
−6

10
−3

10
0

h−error

R
el

at
iv

e 
E

rr
or

 (
lo

g 
sc

al
e)

Number of Elements (log scale)

 

 

N = 3
N = 4
N = 5

The h-error is measured by leaving
the number of nodes per element
constant but increasing the number
of elements.
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per element.



Background Poisson Solver Results

Future Work

1 Parallelization: this method is expensive, but fairly local so it
should scale well.

2 Preconditioning: The conjugate gradient method is
converging slowly for bigger grids / more elements; a diagonal
preconditioner has been implemented but a better option may
be needed.

3 Shallow Water Model: the work presented here, combined
with an advection solver, will provide a high-order method for
solving the shallow water equations (more at PDEs on a

Sphere ’07).
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