Expanding Vapor’s Data Handling Capabilities

Victor Snyder
NCAR SI ParCS
August 10, 2007
Introduction

- Handle data from Weather Research and Forecasting (WRF) model
 - Non-uniform, non-rectangular grid
- Direct output to Vapor’s format
 - Parallel wavelet transformation
Evaluating Vapor and WRF

- Weather data rarely seen in 3D
- Preliminary tests: WRF data looks interesting in 3D
WRF User’s Requirements

Vapor should:
- Handle odd grids
- Deal with invalid data points
- Add certain derived variables
- Handle time steps
And do this all quickly
WRF Data Conversion

- Correctly handles staggered grids
- Efficiently adds derived quantities
- Uses WRF-specific metadata to automate process
Vapor and Large Data Sets

- Wavelet transforms
 - “Smooth” and “detail” parts
- Data conversion
 - Time consuming
 - Redundant
- Goal: simulations output Vapor’s format
Parallel Vapor Output

- Communication
 - Move data points into blocks
- Transformation
 - Readily parallelized
- Output
 - Parallel netCDF
 - netCDF 4
 - HDF5
Initial Tests

- Simplified situation
 - Data already arranged properly
 - Haar wavelets
- Code for transformation of block on single node
 - 8 processors, 2^{18} points: ~5x speed-up
Conclusion

- Vapor’s improved data handling
 - Vapor useful to WRF users
 - Direct output to Vapor’s format is viable