Cross Reference Monitoring of Supercomputers and Support Infrastructure

Tracking data Issues in Cheyenne HPC

Steven Rivera
SIParCS Intern, University of Puerto Rico

JULY 28, 2020
Mission

- Researching inside data of the Supercomputer Infrastructure.
- Finding discrepancies of hardware equipment failure.
- Differentiating between one anomaly and another.
- Finding solutions to improve internal processes.
Cheyenne

● Computing performance of 5.34 PFLOPS.
● 4032 nodes
 ○ A total of 145,152 cores.
 ○ There are 33 sensors in each node.
 ○ Giving us a total of 133,056 sensors in compute nodes.
● There are total of 7 valves and 7 Cooling Distribution Unit (CDU).
 ○ The CDUs provide 75 °F water to cool the compute nodes processors and other hardware.
CDUs Infrastructure

1) Front
 - Temperature display.
 - Room temperature sensor.

2) Back
 - Flow meters
 - Level Sensor
Physical Infrastructure

- The power usage through all the system is around
 - 1.3MW
 - 1.75MW (max.)
- NWSC evaporates around 25000-35000 gallons/day at 1.5MW.
 - 40% more efficient than most data centers.
- Racks runs with 96KPa of water pressure.
- Each compute Rack uses:
 - 78.2kVA
 - 79.8kVA (max.)
- A water flow of 350 l/m loops around each CDUs.
Software Tools

- Grafana
- InfluxDB
- Python
- Johnson Control
 - MetaSys
Process/Monitoring

- Analyzing what data was shown from Cheyenne.
- Understanding the different limits.
- Finding anomalies on specific devices.
 - Different types of queries: data query language.
- Devices names in the queries:
 - Showing a general behavior.
- Scaling any difference with other similar behavior such as:
 - Increases and reductions of load.
- With large number of Racks and nodes it was presented:
 - Unwanted behavior.
 - Large significance load.
● A similar flow is expected between all Racks in °C.
● Suspicion in a device value higher than 26 °C.
 ○ In this case, Rack 3.
● Any operation big enough to be noticeable can be real anomalies.
- Possible causes for the behaviour in Rack 3:
 - Bad water flow
 - Power outage
 - Defective sensor
- A rise of 50% additional usage in every Rack.
 - 100% is a critical state
- Random downgrade of their function, first Rack 4 followed by Rack 8.
- In 4hrs there was a percentage usage below 23%, except Rack 13.
- Increase over 2k of free nodes system.
- Decrease of Job Exclusive nodes 1k and below.
- Opposite process can freeze, damage or delete job submissions.
- Power output from the power supply 0 to power supply 8.
- Approximate reduction of 0.5MW.
- Increased occurred with 0.3MW less.
<table>
<thead>
<tr>
<th>Power Supplies</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply 0</td>
<td>0.382 MW</td>
<td>1.376 MW</td>
<td>1 MW</td>
</tr>
<tr>
<td>Supply 1</td>
<td>0.383 MW</td>
<td>1.332 MW</td>
<td>0.996 MW</td>
</tr>
<tr>
<td>Supply 2</td>
<td>0.383 MW</td>
<td>1.328 MW</td>
<td>1 MW</td>
</tr>
<tr>
<td>Supply 3</td>
<td>0.381 MW</td>
<td>1.368 MW</td>
<td>0.996 MW</td>
</tr>
<tr>
<td>Supply 4</td>
<td>0.382 MW</td>
<td>1.348 MW</td>
<td>0.999 MW</td>
</tr>
<tr>
<td>Supply 5</td>
<td>0.400 MW</td>
<td>1.328 MW</td>
<td>0.999 MW</td>
</tr>
<tr>
<td>Supply 6</td>
<td>0.384 MW</td>
<td>1.328 MW</td>
<td>0.998 MW</td>
</tr>
<tr>
<td>Supply 7</td>
<td>0.379 MW</td>
<td>1.346 MW</td>
<td>0.997 MW</td>
</tr>
<tr>
<td>Supply 8</td>
<td>0.382 MW</td>
<td>1.330 MW</td>
<td>0.998 MW</td>
</tr>
</tbody>
</table>
• Minimum operation was around 0.400 MW.
• Average operation is 1MW.
• Maximum operation is 1.3 MW.
Results

- An anomaly was found in one of the 14 Racks:
 - Real case for temperature of liquid in Rack 3.
- Appearances of high Fluctuation were shown:
 - With a downscale of over 20% of usage in Racks.
- System discrepancies can lead to:
 - Decrease in node availability
 - Temperature increases
 - Loss of running jobs
 - Performance irregularities
- System maintenance can downscale severe temperatures, lower flow of water and reduce future expenses.
- System functions are most of the time stable in temperatures.
Future Improvements

- Live monitoring versus (current) historical analysis
- Automatic alerting via email or web interface when known discrepancies occur
- A way to log historical system behaviours with a database backend
Acknowledgements

Big Thanks to:

• The SIParCS program for the internship
• My mentors Michael Kercher, Jonathan Roberts and helpers Ben Matthews, Jared Baker for their support.
• NCAR and UCAR
• National Science Foundation