A Use Test Case for Multi-Component Regridding in ESMF

Ryan O’Kuinghttons

Colorado School of Mines
What is ESMF?

The Earth System Modeling Framework (ESMF) is software for building and coupling weather, climate, and related models.

It has been used to componentize models such as the GEOS-5 climate model of NASA.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.

- Implement Two-Way coupling.
Description of the Problem

- Use component capabilities of ESMF to interpolate field data from one grid to another.

- Implement Two-Way coupling.
- Implement Grid Class capabilities that are currently being developed.
Interpolation

- The interpolation is done using ESMF’s Sparse Matrix Multiply routine.
- This algorithm generates a sparse matrix from a list of weight values and uses this to transfer data from one matrix (grid) to another.

\[
\text{do } k=1,\text{NumWeights} \\
\quad \text{DestinationField(address(2,k)) } = \text{Weights(k)} * \\
\quad \quad \text{SourceField(address(1,k))} \\
\text{enddo}
\]

- The file used to read in the weights was generated using the SCRIP package of Los Alamos National Laboratories.
File I/O

- All file handling was done with netCDF

- Both grids are read in the initialization phase of the program

- Grids are read into gridded components and weights files are read into a coupler component

- The results of the interpolation are written to another netCDF file
Use Case Structure

There are five phases to the use test case

- Create gridded and coupler components
Use Case Structure

There are five phases to the use test case

- Create gridded and coupler components
- Register the initialize, run, and finalize routines
Use Case Structure

There are five phases to the use test case

- Create gridded and coupler components
- Register the initialize, run, and finalize routines
- Initialize
Use Case Structure

There are five phases to the use test case

- Create gridded and coupler components
- Register the initialize, run, and finalize routines
- Initialize
- Run
Use Case Structure

There are five phases to the use test case

- Create gridded and coupler components
- Register the initialize, run, and finalize routines
- Initialize
- Run
- Finalize
Visualization

- Given the netCDF format of all I/O files, the NCAR Command Language (NCL) was used for visualization.

One of the input fields for this use test case:

\[\text{Field}(i, j) = 100 + 100 \times e^{\left(-2.25 \times (\cos^{-1}(\cos(\text{lat}) \times \cos(\text{lon})))^2\right)} \]
Test Configuration

Programming Language: mixed Fortran77 and Fortran90
Platform: Apple G5, Darwin/Absoft/LAM (Glass)
Platform: SGI IRIX64 (Tempest)
Platform: IBM Power5 (Bluevista)
Communications: MPI
Processors: 6 for each component
Results

The Raw and Relative error in the forward interpolation:

The Raw and Relative error in the backward interpolation:
Future Work

Implement **Function Pointers** for facile definition of the analytic interpolation fields

Continue implementation of new and developing **Grid Class** functionality
Acknowledgements

The entire ESMF Core, for being awesome
Don Stark, my sponsor
Rich Loft, for giving me this opportunity
Jennifer Tobyne, for taking care of all those things ...
Renee Ray, for all of these excellent parties!
References