PANGEO
A COMMUNITY-DRIVEN EFFORT FOR BIG DATA GEOSCIENCE
WHAT WOULD YOU LIKE TO HAVE AND WHY?

Pangeo’s vision for scientific computing in the big-data era

PANGEO’S WEBSITE
pangeo-data.org
Hello!

- Who am I?
 - Joe Hamman, Ph.D., P.E.
 - I am a scientist at the National Center for Atmospheric Research
 - I study the impacts of climate change on the water cycle.
 - I contribute to open-source projects like Pangeo, Xarray, Dask, and Jupyter

Github: @jhamman
Twitter: @HammanHydro
Web: joehamman.com
EARTHCUBE AWARD TEAM

Lamont-Doherty Earth Observatory
COLUMBIA UNIVERSITY | EARTH INSTITUTE
Ryan Abernathey, Chiara Lepore, Michael Tippet, Naomi Henderson, Richard Seager

NCAR
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH
Kevin Paul, Joe Hamman, Ryan May, Davide Del Vento

ANACONDA
Powered by Continuum Analytics
Matthew Rocklin
OTHER CONTRIBUTORS

Jacob Tomlinson, Niall Roberts, Alberto Arribas
Developing and operating Pangeo environment to support analysis of UK Met office products

Rich Signell
Deploying Pangeo on AWS to support analysis of coastal ocean modeling

Justin Simcock
Operating Pangeo in the cloud to support Climate Impact Lab research and analysis

Supporting Pangeo via SWOT mission and funded ACCESS award to UW / NCAR

Yuvi Panda, Chris Holdgraf
Spending lots of time helping us make things work on the cloud
We use our observations to test our models... and our models to test our observations

Observations

*Left: The Soil Moisture and Ocean Salinity (SMOS) mission smos-node.eu
Right: The Soil Moisture Active/Passive (SMAP) mission [smap.nasa.gov]*

Simulations

Monthly Streamflow [cms] 2000-1
WHAT IS PANGEO?

Pangeo is a community working to develop software and infrastructure to enable big-data geoscience.

• **Mission:** To cultivate an ecosystem in which the next generation of open-source analysis tools for the big-data geosciences can be developed, distributed, and sustained.

• **Vision:**
 - Open and collaborative development
 - Tools for scaling computations from small to very large datasets
 - Frameworks for moving scientific analysis to the data
 - Welcoming and inclusive development culture
PANGEO ARCHITECTURE

“Analysis Ready Data” stored on globally-available distributed storage.

Parallel computing system allows users deploy clusters of compute nodes for data processing.

Dask tells the nodes what to do.

Xarray provides data structures and intuitive interface for interacting with datasets.

Cloud / HPC

Jupyter for interactive access on remote systems

end user

web browser
PANGEO DEPLOYMENTS

HTTP://PANGEO-DATA.ORG/DEPLOYMENTS.HTML

PANGEO.PYDATA.ORG

Over 500 unique users since March!

NASA Pleiades

NCAR Cheyenne

(Scale using job queue system)

(Scale using Kubernetes)
What is pangeo.pydata.org?

- Multi-user JupyterHub running on Google Cloud Platform
- Zero-to-jupyterhub deployment using Kubernetes
- Dask scales using “Dask-Kubernetes”

Why the cloud?

- Highly scalable (storage, compute, user access)
- Easy to customize
- Cost effective
WHAT WOULD YOU LIKE TO HAVE AND WHY?

1. Scalable data-proximate computing
2. Cloud optimized data formats
3. Machine readable catalogs
4. Transparent data portals
5. Helpful scientific IT administrators with cloud-native experience
6. On demand derived data products
WHAT DO WE WANT?

- **Self-describing**: data and metadata packaged together
- **On-demand**: data can be read/used in its current form from anywhere
- **Analysis-ready**: no pre-processing required

WHY THE CLOUD?

- **Too big to move**: assume data is to be used but not copied
- **Easy to share**: reduces duplicate storage
- **Scalable**: storage and throughput during computation

GeoTiff files stored in cloud object store support http byte range requests.

We don’t know what the Cloud Optimized NetCDF will be.
Data discovery and access is too hard.

We need better ways to index/search existing metadata catalogs.

It should be much easier to use catalogs to get actual data.

As a scientist, 3 lines of code is about the right amount of effort to starting working with a dataset.

Example Python snippet demonstrating the use of Intake (https://intake.readthedocs.io) catalog package with Xarray, Jupyter, and GoogleCloud.

```python
In [4]: # Load with intake catalog service
import intake
ds = cat.get('xarray_read_chunked')

In [5]: # Print dataset
ds

Out[5]: <xarray.Dataset>
Dimensions: (ensemble: 100, lat: 224, lon: 464, time: 12054)
Coordinates:
  * ensemble (ensemble) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...
  * lat (lat) float64 25.66 25.19 25.31 25.44 25.56 25.69 25.81 25.94 ...
  * lon (lon) float64 -124.9 -124.8 -124.7 -124.6 -124.4 -124.3 ...
  * time (time) datetime64[ns] 1980-01-01 1980-01-02 1980-01-03 ...

Data variables:
  * elevation (lat, lon) float64 dask.array<shape=(224, 464), chunksizes=(224, 464)>
  * neak (lat, lon) int32 dask.array<shape=(224, 464), chunksizes=(224, 464)>
  * prcp (ensemble, time, lat, lon) float64 dask.array<shape=(100, 12054, 224, 464), chunksizes=(1, 360, 224, 464)>
  * t_max (ensemble, time, lat, lon) float64 dask.array<shape=(100, 12054, 224, 464), chunksizes=(1, 360, 224, 464)>
  * t_min (ensemble, time, lat, lon) float64 dask.array<shape=(100, 12054, 224, 464), chunksizes=(1, 360, 224, 464)>
  * t_range (ensemble, time, lat, lon) float64 dask.array<shape=(100, 12054, 224, 464), chunksizes=(1, 360, 224, 464)>

Attributes:
  * history: Version 1.0 of ensemble dataset, created 2018...
  * institution: National Center for Atmospheric Research (NCAR)...
  * nco_omemp_thread_number: 1
  * references: Newman et al. 2018: Gridded Ensemble Precipitation...
  * source: Generated using version 1.0 of CMUS ensemble...
  * title: CMUS daily 24-hr gridded ensemble precipitation...
```
TRANSPARENT DATA PORTALS

WHAT DO WE WANT?

- **Intuitive**: organization needs to easy to understand
- **Simple**: prioritize direct/easy access to datasets instead of fancy interfaces

WHY?

- Manual searches and check boxes don’t scale: portals should supply machine readable data catalogs
- Easy to automate: Batch queries and retrievals

https://registry.opendata.aws
https://open.nasa.gov/open-data/

https://registry.opendata.aws
PANGEO-DATA.ORG

A community platform for Big Data geoscience

OUR GOALS

1. Foster collaboration around the open source scientific python ecosystem for ocean / atmosphere / land / climate science.
2. Support the development with domain-specific geoscience packages.
3. Improve scalability of these tools to handle petabyte-scale datasets on HPC and cloud platforms.

PANGEO.PYDATA.ORG

Pangeo is a community effort for big data geoscience. This JupyterHub is a multi-user server for interactive data analysis running on Google Cloud Platform.

Acknowledgments: Pangeo is supported, in part, by the National Science Foundation (NSF) and the EarthCube Program. Google provided compute credits on Google Compute Engine.

For assistance, please open a GitHub issue.

SIGN IN WITH GITHUB