Assessing the science requirements for Earth system science in the NWSC-3 Procurement

Dr. Richard Loft
Director of Technology Development
Computational and Information Systems Laboratory
National Center for Atmospheric Research

November 13, 2018
IEEE Supercomputing, Dallas Texas
• Background
• Emerging Applications
• Workload Study
• Strawman Design
• Q&A
Cheyenne physical infrastructure

<table>
<thead>
<tr>
<th>Resource</th>
<th># Racks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheyenne</td>
<td>14 HPE 8600 E-Cells each containing 2 water-cooled E-Racks & heat exchanger, and 16 Mellanox 36-port EDR InfiniBand switches
2 air-cooled storage & service racks including login nodes</td>
</tr>
<tr>
<td>Casper</td>
<td>3 PCPC racks; 100 GigE & FDR interconnect</td>
</tr>
<tr>
<td>GLADE</td>
<td>8 DDN SFA14KXe racks containing 32 NSD servers and storage</td>
</tr>
</tbody>
</table>

Total Power

- **HPC**: 1.75 MW
- **Casper**: ~0.11 MW
- **GLADE**: 0.21 MW

Total Power ~2.0 MW
Cheyenne Environment

R&E Networks

Casper (DAV)
- 24 nodes (Various)

Cheyenne (HPC)
- 5.4 petaflops
- 147k Xeon v4 cores

EDR fabric

40/100 Gbps Ethernet

Data Movers

Cold Cache (Tape/Disk)

~100 PB Tape Archive

Campbell Storage
- 20 PB

Hot Cache (NVMe)
- 0.45 PB SSD

Warm Cache (HPC Disk)
- 38 PB

GLADE
NWSC Science Requirements Analysis

• Workload Study
 – Some data already collected

• Technical input
 – Workload study
 – Scientific research objectives from individual PI’s
 – User surveys

• Science Requirements Advisory Panel will
 – Be comprised of internal and external members from community
 – Collect and evaluate technical input
 – Advise NWSC-3 RFP development and procurement decisions
Outline

• Background
• Emerging Applications
• Workload Study
• Strawman Design
• Q&A
NCAR future research priorities

- Air quality prediction
- Extreme events in climate
- Coupled prediction of the Arctic
- Space Weather Predictability
- Tropical cyclone predictability
What’s driving NCAR future applications? ESP!

• **Then**
 – Weather prediction (5-10 days)
 – GAP
 – Climate projections (decades-centuries)

• **Division between meteorology and climate is breaking down**
 – Discoveries in the ocean

• **Now: earth system prediction (ESP) filling that GAP**
 – Subseasonal (Weeks)
 – Seasonal (Months)
 – Climate predictions (years to decadal)
Computing implications of NCAR’s ESP goals

• Coupled models of atmosphere, ocean, sea ice, geospace will become the norm.
• Data assimilation will become much more prevalent.
• Sweet spot of workflow of global models needs to drop from 100 km to 25 km.
• Regionally refined resolutions will need to drop to (1-3 km).
• Goals represent a weak scaling pivot to a much higher level of parallelism for our Earth system models.
• Data assimilation will require innovative job scheduling and data-intensive features.
Emerging Applications

• **Machine Learning (ML > DL)**
 – Data pre-processing (cleaning up observations)
 – Modeling (physics emulation)
 – Data post processing (compression, feature detection)
 – Fault detection (smart CI systems)

• **GPU computing**
 – Whole models (MHD, MPAS-Atmosphere,...)
 – Compute-intensive components (chemistry, LES models)

• **Persistent Data Analytics**
 – Scalable data storage format (data cubes)
 – Parallel workflow orchestration (Dask)
 – ES science analytics tool chain (NCL)

• **High throughput computing**
 – Data assimilation system development
 – Build/Test
Outline

- Background
- Emerging Applications
- Workload Study
- Strawman Design
- Q&A
Cheyenne usage reflects its mission to serve the atmospheric sciences.

Climate: 50% of NCAR’s workload.
Besides CESM, 30+ other applications and models identified across 177 projects.

These 177 projects represent 93% of Cheyenne’s reported use.
A project’s depth is defined as the size of its largest job in nodes (rounded up to the next greater power of 2). Note: Yellowstone nodes had 16 cores.

64% of projects never need more than 64 nodes. These projects use only 13% of the total node-hours.

33% of projects use a max of 65-1024 nodes. These projects use 71% of the total node-hours.

3% of projects use a max of more than 1024 nodes. These projects use 16% of the total node-hours.
A project’s depth is defined as the size of its largest job (rounded to the next greater power of 2).

Note the similarity in usage by projects compared to Yellowstone use.
100 km CESM on Cheyenne: greater capability

<table>
<thead>
<tr>
<th>NCAR System</th>
<th>Intel Xeon Processor</th>
<th>CESM Version</th>
<th>Capability (sim yr/day)</th>
<th>Cost (core-hr per sim yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheyenne</td>
<td>18c (v4)</td>
<td>CESM2</td>
<td>30</td>
<td>3500</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>8c (v2)</td>
<td>CESM2</td>
<td>19.6</td>
<td>5167</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>8c (v2)</td>
<td>CESM1</td>
<td>10.6</td>
<td>1521</td>
</tr>
</tbody>
</table>

100 km CESM take-aways:

CESM is 48% more efficient on Cheyenne compared to Yellowstone.

CESM-2 on Cheyenne can deliver 2.8x the capability, compared to CESM1 on Yellowstone.
Cheyenne workload oozing to higher parallelism

Job size in Cheyenne node equivalents (CN = 2.25x YS)
Cheyenne job data show a pronounced capacity use case: 81% of jobs are short, 1-node and consume 3% of total core-hours.
GLADE storage growth over time

CH (/scratch+ /proj) = 0.42 PB/month

YS (/scratch+/proj) = 0.27 PB/month

CH /glade/scratch

YS /glade/scratch
(YS) Yellowstone -> Cheyenne (CH) data: what can we conclude about future HPC storage demands?

- A **3x** increase in *estimated* workload capacity resulted in an *apparent* increase of
 - **2x** in /scratch asymptotic size
 - **1.8x** in /scratch + /project storage growth rate
- Linear/power law projections suggest that a 3x increase in workload capacity for NWSC3 would equate to:
 - /scratch asymptote should be **~20-25 petabytes**
 - An expected growth rate of **0.76 - 0.87 PB/month** in /scratch + /project storage
Outline

- Background
- Emerging Applications
- Workload Study
- Strawman Design
- Q&A
NWSC-3 Design Strawman (History + Trends)

- R&E Networks
- Commercial Cloud
- Off Prem Cloud
- Ethemet
- Data Movers
- Campaign Storage
- Cold Cache (Tape/Disk) Capacity
- Campaign
- HPC System
- CPU
- GPU
- HPC fabric
- Warm Cache (HPC Disk)
- Hot Cache (NVMe)
- Tape-Archive
- On Prem Cloud
- Cloud R&E Networks
- Commercial Cloud
- Off Prem Cloud
- Ethernet
- Data Movers
- Campaign Storage
- Cold Cache (Tape/Disk) Capacity
- Campaign
- HPC System
- CPU
- GPU
- HPC fabric
- Warm Cache (HPC Disk)
- Hot Cache (NVMe)
Outline

• Background
• Emerging Applications
• Workload Study
• Strawman Design
• Q&A
Breakdown of climate work on Cheyenne

- CESM
- CESM variant
- WACCM
- WACCM-X
- POP2
- CAM & variants
- CLM