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ssh trainXX@gordon.sdsc.edu 
 
cp ~sinkovit/OptimizationExamples.tar . 
 
tar -xf OptimizationExamples.tar 

Logging in and accessing examples 
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Why optimize your code 

 • Computer time is a limited resource. Time on XSEDE systems is 
free**, but awarded on a competitive basis – very few big users get 
everything they want. Time on Amazon Web Services or other cloud 
providers costs real dollars. Maintaining your own cluster/workstation 
requires both time and money. 

• Optimizing your code will reduce the time to solution. Challenging 
problems become doable. Routine calculations can be done quickly 
enough to allow time for exploration and experimentation. In short, you 
can get more science done in the same amount of time. 

• Even if computer time was free, running a computation still 
consumes energy. There’s a lot of controversy over how much energy 
is used by computers and data centers, but estimates are that they 
account for 2-10% of total national energy usage. 

** XSEDE resources are not really free since someone has to pay. The NSF directly, tax payers 
indirectly. Average US citizen paid about $0.07 to deploy and operate Gordon over it’s lifetime 
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… but I have a parallel code and processors are getting 
faster, cheaper and more energy efficient 

 
• There will always be a more challenging problem that you want to solve 

in a timely manner 

• Higher resolution (finer grid size, shorter time step) 

• Larger systems (more atoms, molecules, particles …) 

• More accurate physics 

• Longer simulations  

• More replicates, bigger ensembles, better statistics 

• Most parallel applications have a limited scalability 

• For the foreseeable future, there will always be limitations on availability 
of computation and energy consumption will be an important 
consideration 
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Guidelines for software optimization 

 The prime directive of software optimization: Don’t break anything! 

Getting correct results slowly is much better than getting wrong results quickly 

 

• Don’t obfuscate your code unless you have a really good reason (e.g. kernel 
in a heavily used code accounts for a lot of time) 

• Clearly document your work, especially if new code looks significantly different 

• Optimize for the common case 

• Know when to start/stop 

• Maintain portability. If you need to include modifications that are architecture or 
environment specific, use preprocessor directives to isolate key code 

• Profile, optimize, repeat – new hotspots may emerge 

• Make use of optimized libraries. Unless you are a world-class expert, you are 
not going to write a faster matrix multiply, FFT, eigenvalue solver, etc. 

• Understand capabilities and limitations of your compiler. Use compiler 
options (e.g. -O3, -xHost) for best performance 
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Know when to start / stop 

 
Knowing when to start 

• Is the code used frequently/widely enough to justify the effort? 

• Does the code consume a considerable amount of computer time? 

• Is time to solution important? 

• Will optimizing your code help you solve new sets of problems? 
 

Knowing when to stop 

• Have you reached the point of diminishing returns? 

• Is most of the remaining time spent in routines beyond your control? 

• Will your limited amount of brain power and/or waking hours be better 
spent doing your research than optimizing the code? 
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Intel’s Math Kernel Library (MKL) 

 
Highly optimized mathematical library. Tuned 
to take maximum advantage of Intel 
processors. This is my first choice when 
running on Intel hardware. 

Linear algebra (including implementations of 
BLAS and LAPACK), eigenvalue solvers, 
sparse system solvers, statistical and math 
functions, FFTs, Poisson solvers, non-linear 
optimization 

Many of the routines are threaded. Easy way 
to get shared memory parallelism for running 
on a single node. 

Easy to use. Just build executable with -mkl 
flag and add the appropriate include 
statement to your source (e.g. mkl.h) 

https://software.intel.com/en-us/mkl_11.1_ref 
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Identify hotspots with gprof 

 
gprof is a profiling tool for UNIX/Linux applications. First developed in 
1982, it is still extremely popular and very widely used. It is always the first 
tool that I use for my work. 
 

Universally supported by all major C/C++ and Fortran compilers 

Extremely easy to use 

1. Compile code with -pg option: adds instrumentation to executable 

2. Run application: file named gmon.out will be created. 

3. Run gprof to generate profile: gprof a.out gmon.out 

Introduces little overhead 

Output is easy to interpret 
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1982! 

 
Worth reflecting on the fact that gprof goes back to 1982. Amazing when 
considered in context of the leading technology of the day 

Cray X-MP with 105 MHz processor. High end 

configuration (four CPUs, 64 MB memory) has 

800 MFLOP theoretical peak. Cost ~ $15M 
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gprof flat profile 

 The gprof flat profile is a simple listing of functions/subroutines ordered by their 
relative usage. Often a small number of routines will account for a large majority of 
the run time. Useful for identifying hot spots in your code. 

Flat profile: 

 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  ms/call  ms/call  name     

 68.60    574.72   574.72   399587     1.44     1.44  get_number_packed_data 

 13.48    687.62   112.90                             main 

 11.60    784.81    97.19   182889     0.53     0.53  quickSort_double 

  2.15    802.85    18.04   182889     0.10     0.63  get_nearest_events 

  1.52    815.56    12.71                             __c_mcopy8 

  1.28    826.29    10.73                             _mcount2 

  0.96    834.30     8.02    22183     0.36     0.36  pack_arrays 

  0.12    835.27     0.97                             __rouexit 

  0.08    835.94     0.66                             __rouinit 

  0.06    836.45     0.51    22183     0.02     5.58  Is_Hump 

  0.05    836.88     0.44        1   436.25   436.25  quickSort 
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gprof call graph 

 The gprof call graph provides additional levels of detail such as the exclusive time 
spent in a function, the time spent in all children (functions that are called) and 
statistics on calls from the parent(s) 

index % time    self  children    called     name 

[1]     96.9  112.90  699.04                 main [1] 

              574.72    0.00  399587/399587      get_number_packed_data [2] 

                0.51  123.25   22183/22183       Is_Hump [3] 

                0.44    0.00       1/1           quickSort [11] 

                0.04    0.00       1/1           radixsort_flock [18] 

                0.02    0.00       2/2           ID2Center_all [19] 

----------------------------------------------- 

              574.72    0.00  399587/399587      main [1] 

[2]     68.6  574.72    0.00  399587         get_number_packed_data [2] 

----------------------------------------------- 

                0.51  123.25   22183/22183       main [1] 

[3]     14.8    0.51  123.25   22183         Is_Hump [3] 

               18.04   97.19  182889/182889      get_nearest_events [4] 

                8.02    0.00   22183/22183       pack_arrays [8] 

                0.00    0.00   22183/22183       pack_points [24] 
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The value of re-profiling 

 After optimizing the code, we find that the function main() now accounts for 40% of 
the run time and would be a likely target for further performance improvements. 

Flat profile: 

 

Each sample counts as 0.01 seconds. 

  %   cumulative   self              self     total            

 time   seconds   seconds    calls  ms/call  ms/call  name     

 41.58     36.95    36.95                             main 

 26.41     60.42    23.47    22183     1.06     1.06  get_number_packed_data 

 11.58     70.71    10.29                             __c_mcopy8 

 10.98     80.47     9.76   182889     0.05     0.05  get_nearest_events 

  8.43     87.96     7.49    22183     0.34     0.34  pack_arrays 

  0.57     88.47     0.51    22183     0.02     0.80  Is_Hump 

  0.20     88.65     0.18        1   180.00   180.00  quickSort 

  0.08     88.72     0.07                             _init 

  0.05     88.76     0.04        1    40.00    40.00  radixsort_flock 

  0.02     88.78     0.02        1    20.00    20.00  compute_position 

  0.02     88.80     0.02        1    20.00    20.00  readsource 
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Limitations of gprof 

 
• gprof only measures time spent in user-space code and does not 

account for system calls or time waiting for CPU or I/O 

• gprof has limited utility for threaded applications (e.g. parallelized using 
OpenMP or Pthreads) and will normally only report usage for thread 0 

• gprof can be used for MPI applications and will generate a gmon.out.id 
file for each MPI process. But for reasons mentioned above, it will not 
give an accurate picture of the time spent waiting for communications 

• gprof will not report usage for un-instrumented library routines 

• In the default mode, gprof only gives function level rather than 
statement level profile information. Although it can provide the latter by 
compiling in debug mode (-g) and using the gprof -l option, this 
introduces a lot of overhead and disables many compiler optimizations. 
 
In my opinion, I don’t think this is such a bad thing. Once a function has 
been identified as a hotspot, it’s usually obvious where the time is being 
spent (e.g. statements in innermost loop nesting) 
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MKL vs. non-MKL Exercise 

 • Copy the lineq_mkl.c and lineq_nomkl.c files to your home directory. 
The program generates a random vector and matrix of rank N, calls the 
linear solver DGESV (Ax=b) then reports run time. 

• Compile using the following commands 
 
icc -xHost -O3 -o lineq_mkl lineq_mkl.c -mkl 
 
icc -xHost -O3 -o lineq_nomkl lineq_nomkl.c -L/opt/lapack/intel/lib -lblas  
-llapack -lm 

• On a Gordon compute node, set OpenMP threads to 1, run the two 
programs using a variety of problem sizes and note run times. Repeat 
using 2, 4, 8 and 16 threads 
 
module load lapack 
export OMP_NUM_THREADS=1 
numactl --physcpubind=0 ./lineq_nomkl 3000 
export OMP_NUM_THREADS=4 
numactl --physcpubind=0-3 ./lineq_mkl 3000 
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gprof Exercise #1 

 • Copy the gprof_ex.f file to your home directory. Compile using the 
following command 
 
ifort -pg -O3 -o gprof_ex1 gprof_ex1.f 

• Grab an interactive Gordon compute node 

• Run as follows 
 
time ./gprof_ex1 100000000 

• Generate profile and examine results 
 
gprof gprof_ex1 gmon.out > profile_gpex1 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

gprof example 1 (examining call tree) 

 
----------------------------------------------- 

                0.85    5.23       1/1           MAIN__ [3] 

[6]     12.4    0.85    5.23       1         sub1_ [6] 

                4.05    0.00 100000000/100000000     f2_ [7] 

                1.18    0.00 100000000/200000000     f1_ [8] 

----------------------------------------------- 

                4.05    0.00 100000000/100000000     sub1_ [6] 

[7]      8.2    4.05    0.00 100000000         f2_ [7] 

----------------------------------------------- 

                1.18    0.00 100000000/200000000     sub1_ [6] 

                1.18    0.00 100000000/200000000     sub2_ [9] 

[8]      4.8    2.36    0.00 200000000         f1_ [8] 

----------------------------------------------- 

                0.39    1.18       1/1           MAIN__ [3] 

[9]      3.2    0.39    1.18       1         sub2_ [9] 

                1.18    0.00 100000000/200000000     f1_ [8] 

----------------------------------------------- 

• sub1 called by MAIN once 

• calls f2 10^8 

• calls f1 10^8 

• f2 called by sub1 10^8 

• f1 called by sub1 10^8 

• f1 called by sub2 10^8 

• sub2 called by MAIN once 

• calls f1 10^8 
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Manually instrumenting codes 

 
• Performance analysis tools ranging from the venerable (gprof) to the 

modern (TAU) are great, but they all have several downsides 

• May not be fully accurate 

• Can introduce overhead 

• Sometimes have steep learning curves 

 

• Once you really know your application, your best option is to add your 
own instrumentation. Will automatically get a performance report every 
time you run the code. 

 

• There are many ways to do this and we’ll explore portable solutions in 
C/C++ and Fortran. Note that there are heated online discussions 
arguing over how to best measure wall times. You can safely ignore 
when working at a high level of granularity 
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Linux time utility 

 

$ export OMP_NUM_THREADS=16 ; time ./lineq_mkl 30000 

Times to solve linear sets of equations for n = 30000 

t = 70.548615 

 

real 1m10.733s   wall time 

user 17m23.940s  CPU time summed across all cores 

sys 0m2.225s 

 

If you just want to know the overall wall time for your application, can use 
the Linux time utility. Reports three times 

 

• real – elapsed (wall clock) time for executable 

• user – CPU time integrated across all cores 

• sys – system CPU time 
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Manually instrumenting C/C++ codes 

 

struct timeval tv_start, tv_end; 

 

gettimeofday(&tv_start, NULL); 

// block of code to be timed 

gettimeofday(&tv_end, NULL); 

 

elapsed = (tv_end.tv_sec - tv_start.tv_sec) + 

           (tv_end.tv_usec - tv_start.tv_usec) / 1000000.0; 

 

The C gettimeofday() function returns time from start of epoch (1/1/1970) 
with microsecond precision. Call before and after the block of code to be 
timed and perform math using the tv_sec and tv_usec struct elements  
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Manually instrumenting Fortran codes 

 

integer clock1, clock2; 

double precision elapsed_time 

 

call system_clock(clock1) 

// block of code to be timed 

call system_clock(clock2) 

 

time = elapsed_time(clock1, clock2) 

The Fortran90 system_clock function returns number of ticks of the 
processor clock from some unspecified previous time. Call before and 
after the block of code to be timed and perform math using the 
elapsed_time function (see next slide) 
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Manually instrumenting Fortran codes (cont) 

 

double precision function elapsed_time(c1, c2) 

implicit none 

integer, intent(in) :: c1, c2 

integer ticks, clockrate, clockmax 

 

call system_clock(count_max=clockmax, count_rate=clockrate) 

ticks = c2-c1 

if(ticks < 0) then 

  ticks = clockmax + ticks 

endif 

elapsed_time = dble(ticks)/dble(clockrate) 

 

return 

end function elapsed_time 

Using system_clock can be a little complicated since we need to know the 
length of a processor cycle and have to be careful about how we handle 
overflows of counter. Write this once and reuse everywhere. 
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A note on granularity 

 

elapsed = 0.0; 

 

for (i=0; i<n; i++) { 

  w[i] = x[i] * y[i]; 

  gettimeofday(&tv_start, NULL); 

  z[i] = sqrt(w[i]) + x[i]; 

  gettimeofday(&tv_end, NULL); 

  elapsed += (tv_end.tv_sec - tv_start.tv_sec) + 

              (tv_end.tv_usec - tv_start.tv_usec) / 1000000.0; 

} 

Don’t try to time at too small a level of granularity, such as measuring the 
time associated with a single statement within a loop 

Although they’re pretty lightweight, there is still a cost associated with calls 
to gettimeofday or system_clock. In addition, the insertion of these calls 
into loops can impact the flow and hamper optimizations by the compiler. 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

Reproducibility of optimized codes 

 
• Bit-wise reproducibility means obtaining exactly the same binary 

(internal machine representation) results 
 

• An ASCII dump (formatted output) may look the same but can hide 
differences in the floating point representation if too few significant 
digits are printed 
 

• Think about whether or not you really need bit-wise reproducibility and 
under which conditions (compiler, hardware, processor count). Can be 
done, but not without tradeoffs. 
 

• Decide how much accuracy is needed. Is it acceptable to get a result 
that is correct to within a specified tolerance? Consider constructing a 
test suite that can be used to test reproducibility. 
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Confirming bit-wise reproducibility 

 md5sum can confirm that results are exactly the same. Uses a 128-bit 
cryptographic hash function to generate digital fingerprint of file. Hash collisions 
are possible, but probability is astronomically low. 

 

$ ls -lh * 

-rw-r--r-- 1 sinkovit use300 6.1M May  2 08:31 fleeting_ref_AAPL_050610.csv 

-rw-r--r-- 1 sinkovit use300 101M May  2 08:31 msg_AAPL_050610.csv 

-rw-r--r-- 1 sinkovit use300  83M May  2 08:31 settled_AAPL_050610.csv 

 

$ md5sum * 

d7dcee609d3536d072875856d1a0c253  fleeting_ref_AAPL_050610.csv 

f8655644fb37eedd1c30b8e58fe79d50  msg_AAPL_050610.csv 

b77eaed47a1dc94eb75efb1d2a32432d  settled_AAPL_050610.csv 
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Note on md5sum 

 • The MD5 algorithm should not be used in cases where security is an issue 
(digital signatures or public key certificates) 

• MD5 is perfectly fine for non-secure applications where tampering would not be 
suspected (file transfers, confirming program output) 

• More secure hash functions exist (SHA-256 or SHA-512), but they’ll take longer 

 

utility time hash 

md5sum 13.12 cbf7e312c83db7d2d27ca3f571ee0de3 

sha256sum 41.27 
44b2335f1d98d5b06f28e95cc46c238a6963140b4f1

83f9223b1dc46c81f5673 

sha512sum 28.90 

6d09ec0c4d6db9ff64a2f9633947412ece884b92680

60c6a40c8056e38c8d5ded4d3d13c8840592db9efc

3dccbce22ac5a673993f56e2f6e1af0cb57690f447e 

Timings obtained on Gordon compute node (Intel E5-2670 2.6 GHz) using 6.1 GB ASCII file 
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Looking for differences in ASCII files 

 md5sum is a great way to tell if files are identical, but is useless if there are even 
small differences between runs. The Linux diff utility can be used instead, provides 
details of the differences. 

 

$ wc -l file1 file2 

  464691 file1 Files are exactly the same length (good sign) 

  464691 file2 

 

$ md5sum file1 file2 

13b71bb7b8274c1657b815735046e411  file1  Ugh, different md5sums 

0234c9a3dbc4b94ade7822edc3ae2f61  file2 

 

$ diff file1 file2 

1c1 

< Fri Jun 27 12:36:02 PDT 2014 Different time stamps 

> Fri Jun 27 12:35:46 PDT 2014 

464691c464691 

< Run time: 1236.78 seconds Different run times 

> Run time: 1234.56 seconds 
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Looking for differences in ASCII files 

 If the acceptable changes (e.g. time stamps, run times, node names) between 
output files occur in predictable formats and or locations, we can make clever use 
of  sed, grep, head, tail and other utilities to build more complex tests 

 

$ diff file1 file2 

1c1 

< Fri Jun 27 12:36:02 PDT 2014 First line of output 

> Fri Jun 27 12:35:46 PDT 2014 

464691c464691 

< Run time: 1236.78 seconds Last line of output / only line containing string ‘Run time’ 

> Run time: 1234.56 seconds 

 

$ sed -n '1!p' file1       |       grep -v 'Run time'       |       md5sum  

3169c7872c74b2e1593dcde1f4d7f2be  - 

$ sed -n '1!p' file2       |       grep -v 'Run time'       |       md5sum  

3169c7872c74b2e1593dcde1f4d7f2be  - 
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Using diff on directories 

 We can use diff to recursively compare the contents of entire directories as long as 
the files are named identically.  

 

-r = recursive  --brief = only report whether files differ 

 

This will work for both plain text and binary files 

 

$ diff -r --brief DIR1/ DIR2/ 

$   no output – directory contents identical 

 

$ diff -r --brief DIR1 DIR2 

Only in DIR2: file1   Unique to DIR2 

Only in DIR1: file2   Unique to DIR1 

Files DIR1/fleeting_ref_AAPL_050610.csv  Files differ – no details provided 

and DIR2/fleeting_ref_AAPL_050610.csv differ 
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A very brief intro to sed, grep, head, tail 

 grep prints the lines in a file that 
match (or don’t match) a particular 
pattern 

 

$ grep bird file1    # Has bird 

line2 bird dog cat 

line3 fish cat bird 

$ grep -v dog file1 # Not has dog 

line3 fish cat bird 

 

 head prints the top of a file 

 

$ head -n1 file1  # First line 

line1 dog fish cat 

$ head -n2 file1  # First two lines 

line1 dog fish cat 

line2 bird dog cat 

 

 

tail prints the bottom of a file 

 

$ tail -n1 file1        # Last line 

line3 fish cat bird 

$ tail -n2 file1        # Last two lines  

line2 bird dog cat 

line3 fish cat bird 

 

 

 

sed is a powerful stream editor that 
(among many other capabilities) 
selects lines by record number 

 

$ sed -n ‘2p’ file1  # Line 2 

line2 bird dog cat 

$ sed -n ‘2!p’ file1 # All but line 2 

line1 dog fish cat 

line3 fish cat bird 
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Reproducibility in integer/string codes 

 Integers and characters are represented exactly. The same program should give 
the same results on any system using any compiler. When working with integers, 
just need to be aware of a few potential gotchas when modifying your software 

 

(1) Division results are truncated. As a consequence, some basic arithmetic 
identities are not integer math identities 

 
(a/b) + (c/d) ≠ (ad + bc)/bd 

(2/3) + (5/2) = 0 + 2 = 2 

(22 + 53)/(23) = 19/6 = 3 

 

(2) Avoid modifications to order of operations that might result in overflows 
 

Σ(all terms) =(?) Σ(neg terms) + Σ(pos terms) 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

Reproducibility in floating point codes 

 FP operations are subject to round-off error and seemingly trivial code modifications 
or changes to run conditions can change the answers. If any of the following lead to 
significantly different results, you should re-examine your algorithms 

 

(1) Arithmetic identities that are not necessarily floating point identities. 

 
(a + b) + c   ≠ a + (b + c) 
(a/b) + (c/d) ≠ (ad + bc)/bd 

sqrt(sqrt(a)) ≠ a0.25 

 

(2) Software parallelization, particularly involving global reduction operations (e.g. 
summing over elements of an array). The exact answers may depend on the 
number of threads and/or processes. 

 

(3) Aggressive compiler optimization (typically -O3 and higher) may lead to code 
modifications that do not preserve bit-wise reproducibility 
 

(4) Running on different processor architectures or linking different library versions 
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Random number generation 

 Many applications rely on random number generators to set the initial conditions or 
perform Monte Carlo simulations. If developing your own software, do yourself a big 
favor and provide the capability to set the seed. 

 

Can make this an optional argument that overrides the default behavior. Otherwise, 
you’ll never be sure that the modified version of the software is correct 

 

 $ ./a.out -i infile -o outfile … [-seed 1234] 

 

Seems obvious, but surprising how many code implement something like the 
following without documenting behavior 

 

 srandom(time(0)) 
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Registers 

L1 cache 

L2 cache 

L3 cache 

DRAM 

O(10 KB) 

O(100 KB) 

O(10 MB) 

O(10-100 GB) 

O(ns) 

O(10 ns) 

O(10 ns) 

O(100 ns) 

Disk O(TB - PB) 
O(100 µs SSD) 

O(ms HDD) 

< ns 

Memory hierarchy 

 
Fast 
Small  
$$$$ 

 

Slow 
Large 
Cheap 
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Cache essentials 

 
Temporal locality: Data that was recently accessed is likely to be used 
again in the near future. To take advantage of temporal locality, once data 
is loaded into cache, it will generally remain there until it has to be purged 
to make room for new data. Cache is typically managed using a variation 
of the Least Recently Used (LRU) algorithm. 

 

Spatial locality: If a piece of data is accessed, it’s likely that neighboring 
data elements in memory will be needed. To take advantage of spatial 
locality, cache is organized into lines (typically 64 B) and an entire line is 
loaded at once. 

 

Our goal in cache level optimization is very simple – exploit the principles 
of temporal and spatial locality to minimize data access times 
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One-dimensional arrays 

 
One-dimensional arrays are stored as blocks of contiguous data in memory. 

int *x, n=100; 

x = (int *) malloc(n * sizeof(int)) 

 

Cache optimization for 1D arrays is pretty straightforward and you’ll 
probably write optimal code without even trying. Whenever possible, just 
access the elements in order. 

for (int i=0; i<n; i++) { 

  x[i] += 100; 

} 

 

x[3] x[2] x[4] x[5] x[6] x[1] x[0] … 

0 4 8 12 16 20 24 relative address 
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One-dimensional arrays 

 
What is our block of code doing with regards to cache? 

for (int i=0; i<n; i++) { 

  x[i] += 100; 

} 

 
Assuming a 64-byte cache line and 4-byte integers: 

1. Load elements x[0] through x[15] into cache 

2. Increment x[0] through x[15] 

3. Load elements x[16] through x[31] into cache 

4. Increment elements x[16] through x[31] 

5. … 

In reality, the processor will do really clever things like recognizing the 
pattern of data access and prefetching the next cache line before it is 
needed. 
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Multidimensional arrays 

 

Row-major order: Last or rightmost index varies the fastest. Used in 
Python, Mathematica and C/C++ 

From the computer’s point of view, there is no such thing as a two-
dimensional array. This is just syntactic sugar provided as a convenience 
to the programmer. Under the hood, array is stored as linear block of data 

 

1 2 3 

4 5 6 
1 4 2 5 3 6 

1 2 3 

4 5 6 
1 2 3 4 5 6 

Column-major order: First or leftmost index varies the fastest. Used 
in Fortran, R, MATLAB and Octave (open-source MATLAB clone) 
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Multidimensional arrays 

 
Properly written Fortran code 

do j=1,n    ! Note loop nesting 

  do i=1,n 

    z(i,j) = x(i,j) + y(i,j) 

  enddo 

enddo 

Properly written C code 

for (i=0; i<n; i++) {  // Note loop nesting 

  for (j=0; j<n; j++) { 

    z[i][j] = x[i][j] + y[i][j] 

  } 

} 
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Matrix addition exercise 

 
• Copy the dmadd_good.f and dmadd_bad.f files to your home directory. 

Programs perform 2D matrix addition using optimal/non-optimal loop 
nesting. Inspect the code and make sure you understand logic. 

• Compile programs using the ifort compiler with default optimization 
level and explicitly stating -O0, -O1, -O2 and -O3 

• On a Gordon compute node, run with matrix ranks 20,000, 30,000 and 
40,000 (Programs accept single command line argument specifying the 
matrix rank) 

• Examples: (feel free to use your own naming conventions) 

• ifort -xHost -o dmadd_good_df dmadd_good.f 

• ifort -xHost -o dmadd_bad_O3 -O3 dmadd_bad.f 

• ./dmadd_good_df 20000 

• ./dmadd_bad_O3 30000 

• Keep track of the run times (reported by code) 
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Matrix addition exercise 

 
• Try to explain the timings. Under what optimization levels was 

there a big difference between the optimal/non-optimal versions 
of the codes? 

• What do you think the compiler is doing? 

• Why do we have that mysterious block of code after the matrix 
addition? What possible purpose could it serve? 

• Can you make an educated guess about the default optimization 
level?  
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Loop fusion 

 One of the most basic loop-level optimizations is loop fusion. Two or more 
loops with the same range of iterations are combined into a single loop 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + y[i] 

} 

for (int i=0; i<n; i++) { 

  w[i] = x[i] * y[i] 

} 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + y[i] 

  w[i] = x[i] * y[i] 

} 

Sometimes the compiler can decide which is optimal (fused or not fused), 
but I’ve seen really obvious cases where it doesn’t. My suggestion is to 
just try both and see which one is faster. Note that intervening code 
between the loops may prevent automatic fusion. 
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Loop splitting 

 Loop splitting is the opposite of loop fusion. A single loop is split into two or 
more loops 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + y[i] 

} 

for (int i=0; i<n; i++) { 

  w[i] = x[i] * y[i] 

} 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + y[i] 

  w[i] = x[i] * y[i] 

} 

Sometimes the compiler can decide which is optimal (fused or not fused), 
but I’ve seen really obvious cases where it doesn’t. My suggestion is to 
just try both and see which one is faster. 
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Loop fusion exercise 

 
• Copy fusion.f to your home directory 

• Compile and run as follows 
ifort -xHost -O3 -o fusion fusion.f 
numactl --physcpubind=0 ./fusion 40000 

• Look for obvious opportunity for loop fusion. 

• Can w(i) be computed at same time as z(i) 

• Is the array z(i) even needed? 

• Compare run times for original and modified codes 
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Loop invariant optimization 

 Pull repeated calculation out of loop and use the pre-calculated result in its 
place. 

sqrtc = sqrt(c); 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + sqrtc; 

} 

Compilers can often do this for you, particularly if the loops are simple. Still 
suggest that you do this yourself and be guaranteed that the optimization 
will be done. No real downsides. 

for (int i=0; i<n; i++) { 

  z[i] = x[i] + sqrt(c); 

} 
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Loop invariant optimization 

 When working with nested loops, the invariants will sometime be less 
obvious and may even be a vector of results.  

for (i=0; i<nx; i++) { 

  for (j=0; j<ny; j++) { 

    for (k=0; k<nz; k++) { 

      x2y2 = x[i]*x[i] + y[j]*y[j]; 

      z2   = z[k] * z[k]; 

      res[i][j][k] = exp(-a*z2) * sqrt(-b*x2y2); 

    } 

  } 

} 

 

 

x2y2 does not depend 

on index k 

sqrt(-b*x2y2) does not 

depend on index k 
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Loop invariant optimization 

 1. Moved calculation of x2 to outermost loop nesting 
Evaluated nx times instead of nx*ny*nz 

2. Moved calculation of sqrt(x2+y2) out one level of nesting  
Evaluated nx*ny times rather than nx*ny*nz 

for (i=0; i<nx; i++) { 

  x2 = x[i]*x[i]; 

  for (j=0; j<ny; j++) { 

    x2y2 = x2 + y[j]*y[j]; 

    sqrtx2y2 = sqrt(-b*x2y2); 

    for (k=0; k<nz; k++) { 

      z2   = z[k] * z[k]; 

      res[i][j][k] = exp(-a*z2) * sqrtx2y2; 

    } 

  } 

} 

 

 

z2 does not depend on 

indices i or j 

exp(-a*z2) does not 

depend on indices i or 

j 
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Loop invariant optimization 

 Pre-calculate vector of exp(-a * z2) results and reuse for every set of (i,j). 
Reduces number of exponential evaluations to nz from nx*ny*nz 

for (k=0; k<nz; k++) { 

  zterm[k] = exp(-a*z[k]*z[k]); 

} 

 

for (i=0; i<nx; i++) { 

  x2 = x[i]*x[i]; 

  for (j=0; j<ny; j++) { 

    x2y2 = x2 + y[j]*y[j]; 

    sqrtx2y2 = sqrt(-b*x2y2); 

    for (k=0; k<nz; k++) { 

      res[i][j][k] = zterm[k] * sqrtx2y2; 

    } 

  } 

} 
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Loop invariant optimization 

 If our result involved exp(-b * (x2+y2)) instead of sqrt(-b*(x2+y2)), we could 
have taken things one step further by pre-calculating three vectors. 
Innermost loop would only involve multiplications 

for (i=0; i<nx; i++) { xterm[i] = exp(-b * x[i]*x[i]); } 

for (j=0; j<ny; j++) { yterm[j] = exp(-b * y[j]*y[j]); } 

for (k=0; k<nz; k++) { zterm[k] = exp(-a * z[k]*z[k]); } 

 

for (i=0; i<nx; i++) { 

  for (j=0; j<ny; j++) { 

    for (k=0; k<nz; k++) { 

      res[i][j][k] = xterm[i] * yterm[j] * zterm[k]; 

    } 

  } 

} 
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Loop peeling 

 In a loop peeling optimization, one or more iterations are pulled out of the 
loop. Avoids unnecessary calculations associated with special iterations; 
also allows fusion of loops with slightly different iteration ranges 

The example above illustrates how peeling off the first iteration of the first 
loop (i=0) both avoids special case (product instead of sum) and allows 
fusion with the following loop  

for (int i=0; i<n; i++) { 

  if (i == 0) { 

    z[i] = x[i] * y[i]; 

  } 

  z[i] = x[i] + y[i] 

} 

for (int i=1; i<n; i++) { 

  w[i] = x[i] * y[i] 

} 

z[0] = x[0] * y[0]; 

for (int i=1; i<n; i++) { 

  z[i] = x[i] + y[i] 

  w[i] = x[i] * y[i] 

} 
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Loop unrolling 

 Loop body is replicated and the stride is modified accordingly. This optimization 
can help the processor make better use of arithmetic functional units. 

for (int i=0; i<1024; i++) { 

  z[i] = x[i] + y[i] 

} 

for (int i=0; i<1024; i+=4) { 

  z[i]   = x[i]   + y[i] 

  z[i+1] = x[i+1] + y[i+1] 

  z[i+2] = x[i+2] + y[i+2] 

  z[i+3] = x[i+3] + y[i+3] 

} 

Note that this example is particularly simple since the loop count is divisible by 
the unrolling depth. In general, you’ll need to write cleanup code to handle the 
leftover iterations (remainder of n/depth). 

You will rarely beat the compiler and manual loop unrolling will make your code 
ugly and difficult to maintain. Best choice for unrolling depth may be processor 
architecture dependent. 
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Loop unrolling 

 Although you’ll rarely beat the compiler, sometimes you’ll encounter a loop that 
is too complex for it to accurately analyze. Below is an example where manual 
loop unrolling by 4x did better than the compiler (original loop shown) 

do i=0,4319,2 ! Unrolled loop  i=0,4319,8 

   j0=mg63_miijj(0,i) 

   j1=mg63_miijj(1,i) 

   j2=mg63_miijj(2,i) 

   i0=mg63_miijj(3,i) 

   i1=mg63_miijj(4,i) 

   i2=mg63_miijj(5,i) 

   i3=mg63_miijj(6,i) 

   pvi3jj(1 ) = pvi3jj(1 ) + d(i0,i1)*d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1) 

   pvi3jj(2 ) = pvi3jj(2 ) + d(i0,i1)*d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1) 

   pvi3jj(3 ) = pvi3jj(3 ) + d(i0,i1)*d(i1,i2)*d(i1,i3)*d(i0,j0)*d(i0,j1) 

   ... 

   pvi3jj(22) = pvi3jj(22) + d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1) 

   pvi3jj(23) = pvi3jj(23) + d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1) 

   pvi3jj(24) = pvi3jj(24) + d(i0,i2)*d(i2,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1) 

enddo 
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Breaking out of loop early 

 Look for opportunities to break out of a loop early. This will generally require 
that you understand the semantics of your code 

for (int i=0; i<n; i++) { 

  if (y[i] < const) { 

    // Do stuff 

  } 

} 

for (int i=0; i<n; i++) { 

  if (y[i] >= const) { 

    break; 

  } else { 

    // Do stuff 

  } 

} 

In this simple example (taken from real-life application), I used my knowledge 
that the elements of array y are monotonically increasing (y[0] ≤ y[1] ≤ y[2] ≤ 
y[3] …). The compiler only understands the syntax of your code and cannot 
safely do this optimization for you. 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

Short loop optimizations / special cases 

 If you expect that a loop body may be executed for a small number of iterations, 
can generate code for special cases. 

for (dm=0; dm<num_dm; dm++) { 

  df = ngc[p][dm] – nd[i][dm]; 

  dist = dist + df*df; 

} 

switch(num_dm) 

 

case 1: 

  df0 = ngc[p][0] - nd[i][0]; 

  dist = df0*df0; 

  break; 

 

case 2: 

  df0 = ngc[p][0] - nd[i][0]; 

  df1 = ngc[p][1] - nd[i][1]; 

  dist = df0*df0 + df1*df1; 

  break; 

 

[Additional cases] 

 

default: 

  for (dm=0; dm<num_dm; dm++) { 

    df = ngc[p][dm] – nd[i][dm]; 

    dist = dist + df*df; 

  } 

  break; 

 

 

Note - stripped down example taken from flow 
cytometry clustering code. In full application, 
loop is nested within two additional loops. May 
not have obtained much speedup as shown 
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Short loop optimizations / special cases 

 Example taken from optimization of MPAS scalar advection routine. Optimized 
for the special (and overwhelmingly most common case) where cell is hexagon. 
Retained the original code as the default case 

select case(nEdgesOnCell(iCell)) 

case(6) 

   do k=1, nVertLevels 

      s_max(k,iCell) = max(s_max(k,iCell),& 

           scalar_old(k, cellsOnCell(1,iCell)), & 

           scalar_old(k, cellsOnCell(2,iCell)), & 

           scalar_old(k, cellsOnCell(3,iCell)), & 

           scalar_old(k, cellsOnCell(4,iCell)), & 

           scalar_old(k, cellsOnCell(5,iCell)), & 

           scalar_old(k, cellsOnCell(6,iCell))) 

case default 

   do i=1, nEdgesOnCell(iCell) 

      do k=1, nVertLevels 

         s_max(k,iCell) = max(s_max(k,iCell),scalar_old(k, cellsOnCell(i,iCell)))                                                                 

      end do 

   end do 

end select 
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Short loop optimizations / special cases 

 More complex example from MPAS scalar advection routines for special case of 
pairs of neighboring hexagonal cells 

select case(nAdvCellsForEdge(iEdge)) 

case(10) 

   do jj=1,10 

      ica(jj)    = advCellsForEdge(jj,iEdge) 

      swa(jj,1)  = adv_coefs(jj,iEdge)   + coef_3rd_order*adv_coefs_3rd(jj,iEdge) 

      swa(jj,2)  = adv_coefs(jj,iEdge)   - coef_3rd_order*adv_coefs_3rd(jj,iEdge) 

   enddo 

   do k=1,nVertLevels 

      ii = merge(1, 2, uhAvg(k,iEdge) > 0)  

      flux_arr(k,iEdge) = uhAvg(k,iEdge)*( swa(1,ii)*scn(k,ica(1)) & 

         + swa(2,ii)*scn(k,ica(2)) + swa(3,ii)*scn(k,ica(3)) + swa(4,ii)*scn(k,ica(4)) & 

         + swa(5,ii)*scn(k,ica(5)) + swa(6,ii)*scn(k,ica(6)) + swa(7,ii)*scn(k,ica(7)) & 

         + swa(8,ii)*scn(k,ica(8)) + swa(9,ii)*scn(k,ica(9)) + swa(10,ii)*scn(k,ica(10))) 

   enddo  

case default 

   do i=1,nAdvCellsForEdge(iEdge) 

      iCell = advCellsForEdge(i,iEdge) 

      do k=1,nVertLevels 

         scalar_weight = uhAvg(k,iEdge)*(adv_coefs(i,iEdge) +  & 

           coef_3rd_order*sign(1.0_RKIND,uhAvg(k,iEdge))*adv_coefs_3rd(i,iEdge)) 

         flux_arr(k,iEdge) = flux_arr(k,iEdge) + scalar_weight* scn(k,iCell) 

      end do 

   end do 

end select 
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Short loop optimizations / special cases 

 More complex example from MPAS scalar advection routines for special case of 
pairs of neighboring hexagonal cells 

select case(nAdvCellsForEdge(iEdge)) 

case(10) 

   do jj=1,10 

      ica(jj)    = advCellsForEdge(jj,iEdge) 

      swa(jj,1)  = adv_coefs(jj,iEdge)   + coef_3rd_order*adv_coefs_3rd(jj,iEdge) 

      swa(jj,2)  = adv_coefs(jj,iEdge)   - coef_3rd_order*adv_coefs_3rd(jj,iEdge) 

   enddo 

   do k=1,nVertLevels 

      ii = merge(1, 2, uhAvg(k,iEdge) > 0)  

      flux_arr(k,iEdge) = uhAvg(k,iEdge)*( swa(1,ii)*scn(k,ica(1)) & 

         + swa(2,ii)*scn(k,ica(2)) + swa(3,ii)*scn(k,ica(3)) + swa(4,ii)*scn(k,ica(4)) & 

         + swa(5,ii)*scn(k,ica(5)) + swa(6,ii)*scn(k,ica(6)) + swa(7,ii)*scn(k,ica(7)) & 

         + swa(8,ii)*scn(k,ica(8)) + swa(9,ii)*scn(k,ica(9)) + swa(10,ii)*scn(k,ica(10))) 

   enddo  

case default 

   do i=1,nAdvCellsForEdge(iEdge) 

      iCell = advCellsForEdge(i,iEdge) 

      do k=1,nVertLevels 

         scalar_weight = uhAvg(k,iEdge)*(adv_coefs(i,iEdge) +  & 

           coef_3rd_order*sign(1.0_RKIND,uhAvg(k,iEdge))*adv_coefs_3rd(i,iEdge)) 

         flux_arr(k,iEdge) = flux_arr(k,iEdge) + scalar_weight* scn(k,iCell) 

      end do 

   end do 

end select 

Precalculated quantities used in 

following loop 

Pushed inside loop over vertical 

levels and expanded loop body for 

case=10 
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Select case gotcha 

 
• When applying this type of optimization, may want to only do for a limited 

number of special/common cases. If the number of cases becomes too large, 
compiler may choke due to complexity of code. 

• Limiting cases – especially those corresponding to rare conditions – keeps 
the code cleaner and easier to read 

• This caught me by surprise since I expected that each case would have been 
optimized separately by the compiler 

• Note that chained if … else if statements are not a workaround. Appear to be 
translated in the same way as select case statement. Ditto for C/C++ switch 
case syntax 
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Non cache/loop optimizations 

 
• Although there is some overlap between loop and non-loop 

optimizations, these techniques are generally applied at the statement 
or whole program level. 

• The compiler can do some of these for you (e.g. constant propagation). 
Others, such as force reduction and (especially) inter-procedural 
optimization will usually require that the programmer modify the code. 

• Unless it makes your code excessively difficult to read or maintain, 
suggest that you do these yourself. Will avoid surprises when using 
different versions of compilers or optimization levels. 
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Obviousness alert! 

 Some of the things that I’ll be discussing in this presentation are 
completely obvious. That said, they’re still worth pointing out since they 
are often overlooked and only become obvious after the fact   
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Constant folding 

 
Compiler recognizes constant expressions and evaluates at compile time 
rather than performing operations at run time. These are trivial for the 
compiler and there’s no reason to do them yourself, especially if the 
original code is easier to understand 

double precision pi = 2.0d0 * acos(0.0d0) 

double precision e = exp(1.0d0) 

integer gib = 2**30 

 

 

 
 

double precision pi = 3.14159265358979 

double precision e = 2.71828182845904 

integer gib = 1073741824 
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Constant propagation 

 
Constants are propagated at run time into other expressions that depend 
on them. Trivial for the compiler to do these, no reason to implement 
manually if it makes code more difficult to read. 

int x = 17; 

int y = x + 12 – 3; 

int z = x + y; 

 

 

 
 

int x = 17; 

int y = 26; 

int z = 43; 
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If the compiler does this, why are we even 
talking about it here? 

 Constant folding and propagation depend on the compiler having enough 
information to do the optimizations. If your program uses constants, be 
sure to code them explicitly. 

myfunc(17); 

... 

void myfunc (int q) {  

  int x = q; 

  int y = q + 12 – 3; 

  int z = q + y; 

 

 

 
 

int x = 17; 

int y = 26; 

int z = 43; 
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Force reduction 

 
A force reduction optimization involves the replacement of an expensive 
operation with a less expensive one. 

Exponentiation operations, especially floating point base raised to a 
floating point power, are particular expensive. Look for opportunities to 
replace with multiplications, particularly if the exponent is known at 
compile time 

 pow(x,8.0)  x2 = x*x; x4 = x2*x2; x8 = x4*x4 

 pow(x,1.5)  y = x * sqrt(x) 

Fortran and newer versions of C++ overload the pow() function. Use 
integer exponent whenever possible 

 double precision x,y  double precision x 

 x**y    integer n 

     x**n 
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Force reduction 

 
Operations involving trig functions can often be simplified by using the trig 
identifies that you learned in high school. Just make sure that your 
transformation apply to all quadrants if applicable 

 sin(x)*cos(x)     0.5 * sin(2*x) 

 sin(x)*cos(y)+cos(x)*sin(y)   sin(x+y) 

 

If a and b are fixed and sum needs to be calculated repeatedly for many 
values of x, can pre-calculate the constants c and phi. 

 a*sin(x) + b*cos(x)  c = sqrt(a*a + b*b) 

     phi = atan2(b,a) 

     c*sin(x+phi) 
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Force reduction 

 
There are often hidden opportunities for force reductions. Look at logical 
tests that can be written in a more efficient way. Think about what results 
are really needed. 

count = 0; 

for (i=0; i<n; i++) { 

  if (log(x[i]) < c) { 

    count++; 

  } 

} 

count = 0; 

expc = exp(c) 

for (i=0; i<n; i++) { 

  if (x[i] < expc) { 

    count++; 

  } 

} 

In this example, we didn’t really need to know the logarithm of x[i] and we 
could recast using a simple comparison to a pre-computed value. 
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Force reduction exercise 

 
• Copy the disttest.c file to your home directory. Program generates a set 

of randomly distributed points in the unit square and calculates number 
that are separated by less than a specified tolerance. Inspect the code 
and make sure you understand logic. 

• Compile program using the following options 
 
icc -xHost -O3 -o disttest disttest.c 
 

• Run executables on Gordon compute node and keep track of run times 
as reported by code. Try n=10000, 50000, 100000 and various values 
for tolerance 
 
numactl --physcpubind=0 ./disttest 50000 0.01 

• Apply force reduction optimization to reduce the run time 
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Short circuiting 

 
Many imperative programming languages (MATLAB, Perl, Python, Java, 
Fortran, C/C++) use short circuit evaluation for compound logical tests. 
Note though that some Fortran compilers do not perform short circuiting. 

Disjunctions (‘OR’ tests) evaluate to TRUE once the first argument that 
evaluates to TRUE is encountered 

Conjunctions (‘AND’ tests) evaluate to FALSE once the first argument 
that evaluates to FALSE is encountered 

As a consequence, subsequent arguments are not evaluated once the 
final result is known. We can take advantage of this to write more efficient 
code. 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

Short circuiting (disjunction) 

 
Some good rules of thumb for ordering arguments (P || Q) 

1. If P and Q take roughly the same amount of time to evaluate, put the 
argument that is more commonly TRUE first 
 
if (usually_true || usually_false) 
if (sin(x) > 0.01 || cos(y) < 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed 
 

2. If P and Q are vastly different in the time required for evaluation, put 
the faster test first 
 
if (fast_test || slow_test) 
if (x > y || pow(x,y)/atan2(w,z) > log(sqrt(x/y)) 
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Short circuiting (conjunction) 

 
Some good rules of thumb for ordering arguments (P && Q) 

1. If P and Q take roughly the same amount of time to evaluate, put the 
argument that is more commonly FALSE first 
 
if (usually_false && usually_true) 
if (cos(y) < 0.01 && sin(x) > 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed 
 

2. If P and Q are vastly different in the time required for evaluation, put 
the faster test first 
 
if (fast_test && slow_test) 
if (x > y && pow(x,y)/atan2(w,z) > log(sqrt(x/y)) 
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Avoid recalculating results 

 
One of the easiest ways to reduce runtime is to avoid calculating a result 
multiple times. Sometimes the compiler can recognize this and pre-
calculate the result 

 

Original    Compiler will probably do this 

a = w + x*x + sqrt(y)  temp = x*x + sqrt(y) 

b = z + x*x + sqrt(y)  a = w + temp 

    b = z + temp 

 

For user defined function, compiler needs to be careful of side effects and 
may not be able to safely perform the optimization 

a = w + x*x + func(y) // Did func change a global variable? 

b = z + x*x + func(y) // Will the 2nd call return the same result? 
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Avoid recalculating results (cont.) 

 
Pre-calculating results can have an even bigger impact when the result is 
calculated repeatedly in a loop body. This is know as a loop invariant 
optimization 

 

for (i=0; i<n; i++) { 

 a[i] = b[i] + sqrt(c); 

} 

 

The compiler will generally recognize simple invariants and pull outside of 
the loop. For the above example, the compiler will generate code like the 
following 
 

sqrtc = sqrt(c); 

for (i=0; i<n; i++) { 

 a[i] = b[i] + sqrtc; 

} 
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Inter-procedural optimizations 

 
• Until now, we’ve mostly been focusing on optimizations at the loop or 

function level. Inter-procedural optimizations, which require considering 
the application as a whole 

• Compilers are great at optimizing loops (inversion, unrolling, fusion, 
splitting, peeling ,etc.) and statements, but can rarely recognize 
opportunities for inter-procedural optimizations. 

• These generally require an intimate understanding of your code. 

• Very often, this optimization requires that you recognize operations that 
are repeated on the same set of data from one invocation of a function 
to the next. 
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Inter-procedural optimization (example 1) 

 
In a flow-cytometry code, noticed that a function was called five times in a 
row with slightly different sets of arguments (diffs highlighted in red) 

Ei=get_avg_dist(rpc[temp_i], temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);                                                     

  

Ej=get_avg_dist(rpc[temp_j], temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);      

  

E1=get_avg_dist(center_1, temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);                                                                    

  

E2=get_avg_dist(center_2, temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);                                                                    

  

E3=get_avg_dist(center_3, temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);  
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Inter-procedural optimization (example 1) 

 Within the get_avg_dist function, the key loops involve a comparison 
between elements of population_ID and the scalars (temp_i, temp_j) to 
decide which elements of norm_data are used for the calculations. Recall 
that center is the only argument to change between calls and the same 
elements of norm_data are used all five times 

for (i=0; i<file_Len; i++) { 

  if (population_ID[i]==temp_i || population_ID[i]==temp_j) { 

    dist1 = center[d1] – norm_data[i][d1]; 

    dist2 = center[d2] – norm_data[i][d2]; 

    dist3 = center[d3] – norm_data[i][d3]; 

    d = dist1*dist1 + dist2*dist2 + dist3*dist3; 

    if (d < radius) num_neighbors++ 

} 

get_avg_dist(center, temp_i, temp_j, population_ID,  

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);                                                                    
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Inter-procedural optimization (example 1) 

 To avoid having to do the same tests five times in a row, do a “gather” 
operation to collect elements of packed data into an array and pass as 
argument to a modified get_avg_dist. Led to ~ 3x speedup of program. 

npacked = 0; 

for (i=0;i<file_Len;i++) { 

  if (population_ID[i]==temp_i || population_ID[i]==temp_j){ 

    packed1[npacked] = norm_data[i][d1]; 

    packed2[npacked] = norm_data[i][d2]; 

    packed3[npacked] = norm_data[i][d3]; 

    npacked++; 

  } 

} 

for (i=0; i<npacked; i++) { 

  dist1 = center[d1] – packed1[i]; 

  dist2 = center[d2] – packed2[i]; 

  dist3 = center[d3] – packed3[i]; 

  d = dist1*dist1 + dist2*dist2 + dist3*dist3; 

  if (d < radius) num_neighbors++ 

} 
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Inter-procedural optimization (example 2) 

 In Latent Dirichlet Allocation code (identifies topics in free text), profiling 
shows that nearly all time spent in a  single method 

int model::sampling(int m, int n) { 

int topic = z[m][n]; 

int w = ptrndata->docs[m]->words[n]; 

nw[w][topic] -= 1; 

nd[m][topic] -= 1; 

nwsum[topic] -= 1; 

ndsum[m] -= 1; 

 

for (int k = 0; k < K; k++) { 

  p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) *  

         (nd[m][k] + a) / (ndsum[m] + Ka);     

} 

 

nw[w][topic] += 1; 

nd[m][topic] += 1; 

nwsum[topic] += 1; 

ndsum[m] += 1; 

return topic; 

for (int m=0; m<M; m++) { 

  for (int n=0; n<N; n++) { 

    int topic = sampling(m,n); 

    z[m][n] = topic; 

  } 

} 
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Inter-procedural optimization (example 2) 

 Note that sampling(m,n) called repeatedly with same value of m and that 
only a few elements of nd, nwsum and ndsum are (temporarily) updated 

int model::sampling(int m, int n) { 

int topic = z[m][n]; 

int w = ptrndata->docs[m]->words[n]; 

nw[w][topic] -= 1; 

nd[m][topic] -= 1; 

nwsum[topic] -= 1; 

ndsum[m] -= 1; 

 

for (int k = 0; k < K; k++) { 

  p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) *  

         (nd[m][k] + a) / (ndsum[m] + Ka);     

} 

 

nw[w][topic] += 1; 

nd[m][topic] += 1; 

nwsum[topic] += 1; 

ndsum[m] += 1; 

return topic; 

for (int m=0; m<M; m++) { 

  for (int n=0; n<N; n++) { 

    int topic = sampling(m,n); 

    z[m][n] = topic; 

  } 

} 

Potential 

invariants 
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Inter-procedural optimization (example 2) 

 Pre-calculate array of values that do not change (much) across successive 
calls to sampling and update only necessary elements 

int model::sampling(int m, int n) { 

int topic = z[m][n]; 

nd[m][topic] -= 1; 

nwsum[topic] -= 1; 

f1[topic] = (nd[m][topic] + a) /  

            ((nwsum[topic] + Vb)* 

            (ndsum[m] - 1.0 + Ka)); 

 

for (int k = 0; k < K; k++) { 

  p[k] = (nw[w][k] + b) * f1[k]; 

} 

 

nd[m][topic] += 1; 

nwsum[topic] += 1; 

f1[topic] = ...; 

for (int m=0; m<M; m++) { 

  for (int k = 0; k < K; k++) { 

    f1[k] = (nd[m][k] + a) /  

    ((nwsum[k] + Vb)* 

    (ndsum[m] - 1.0 + Ka)); 

  } 

  for (int n=0; n<N; n++) { 

    int topic = sampling(m,n); 

    z[m][n] = topic; 

  } 

} 

 

Entire application is now 

1.5-2.2x faster, depending 

on number of topics 
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Unique optimizations 

 
• Standard techniques will take you a long way, but sometimes you get 

the biggest payoffs from novel, one-off optimizations 

• These are also the most fun optimizations. To me, it’s like getting paid 
to do brain ticklers 

• Often requires a more intimate understanding of your application 

• Once you’ve identified your hotspot, single-mindedly focus your efforts 
on a better, faster solution 

• Hard to provide concrete advice since the optimizations tends to be 
very problem specific. In many cases though, they require little 
advanced knowledge beyond high school algebra, trig and geometry 
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Approximate expensive function and redo 
accurate calculation only when necessary 

 
Fortran application was spending most of its time calculating inverse 
cosine (acos) function. Result used in test that is rarely satisfied 
 

if (acos(xprod) < abs(xi-xj)) then 

   -- do some calculations -- 

endif 

 

Google search found an inexpensive approximation (20x faster) to inverse 
cosine (π/2 - Ax5 - Bx) with a known maximum error. Use for initial test and 
recalculate acos only when needed. Note that this has no impact on final 
results 
 

if(acos_approx(xprod) < abs(xi-xj) + max_err) then 

   if(acos(xprod) < abs(xi-xj) then 

      -- do some calculations -- 

   endif 

endif 



SAN DIEGO SUPERCOMPUTER CENTER 

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO 

Fast calculation of sum over logs  

 
Many problems in bioinformatics, statistical physics and other fields 
require the calculation of log probabilities. The direct product over small 
probabilities results in underflow, so we need to calculate sum over logs 
instead 

 

 
Want log( pi

i=1

n

Õ ), but pi
i=1

n

Õ underflows

Instead, calculate log(pi
i=1

n

å )

The downside is that the latter is n times more expensive. This can have a 
big impact on performance if n is large and/or log probabilities are 
frequently calculated 
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Fast calculation of sum over logs (cont.)  

 
To avoid the expensive logarithm calculations, first split arguments into 
normalized fractions (1/2 ≤ x < 1) and powers of two. Can do this with the 
very fast C frexp function. Then accumulate product over fractions, sum 
over powers of two and do a little algebra at the end 

 

                5 x 17 x 37 = (0.625 x 23) x (0.53125 x 25) x (0.578125 x 26) 

                                   = (0.625 x 0.53125 x 0.578125) x 214 

                                   = 0.1919556 x 214 

         log(5 x 17 x 37) = log(0.1919556) + log(2.0) x 14 = 3.49762 ✔ 
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Fast calculation of sum over logs (cont.)  

 
What if the product over fractions underflows? Multiply by constant to keep 
product close to one and correct for this later. Assumes that the fractional 
parts of the arguments are uniformly distributed between ½ and 1. Here’s 
the final solution 

 

c=1.358858; 

sprod = 1.0; 

xsum = 0.0; 

 

for (i=0; i<n; i++) { 

   s = frexp(p[i], &x);  // Split into fraction and power of 2 

   sprod *= (s * c);     // Product over fractions, with correction 

   xsum += x;            // Sum over powers of two 

} 

logsum = log(sprod) + log(2.0)*xsum - n*log(c); 
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log sum exercise 

 
• Copy the logsum.c file to your home directory. Program performs log 

sum using both standard and optimized method. Inspect the code and 
make sure you understand logic. 

• Compile program using the following options 
 
gcc -O3 -o logsum_gcc logsum.c -lm 
icc -O3 -o logsum_icc logsum.c 
 

• Run executables on Gordon compute node and keep track of run times 
as reported by code. Try altering the following (line 15), but keeping 
n*m constant 

• n (number of contributions to log sum) 

• m (number of trials) 
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log sum exercise 

 
• Are there any noticeable differences between the timings for the 

Intel (icc) and GNU (gcc) compilers? 

• Did you notice any trends in the ratio of run times as a function 
of problem size? 

• If you noticed a difference between the compilers why do you 
think this happened? 
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Linear algebra - DSYRK 

 
After initial rounds of optimization, determined that application was spending most 
of its time in the DSYRK linear algebra routine 

 

D  αAAT + βC      (A and C matrices, α and β and constants) 

 

Figured that there was no room left for improvement, then took a more careful look 
at the way the matrix A is constructed from the concatenation of two matrices 

 

a11 a12 a13 a14
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a31 a32 a33 a34

a41 a42 a43 a44
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Rewrite A as 

concatenation of 

two matrices A 

and B 

AAT can be 

expressed as 

BBT + CCT  
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Linear algebra - DSYRK (cont.) 

 
Further inspection revealed that the nested loops over indices provides 
opportunities for pre-calculating the partial results (BBT, CCT) and replacing the 
DSYRK call with a much faster matrix addition. 

Loop over i (i:n) 

  Xi  BiBi
T 

  Yi  CiCi
T 

Loop over i (i:n) 

  Loop over j (i:n) 

    R  Xi + Yj 

    ... 

Loop over i (1:n) 

  Loop over j (1:n) 

    A  [Bi Cj] 

    R  DSYRK(A) 

    ... 
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A few words about optimizing parallel codes 

 
• Fast parallel codes depend on fast underlying serial algorithms 

• We don’t have time to get into optimization of parallel algorithms, but 
here are a few things to consider 
 

• Address load balancing – make sure that each process or thread is 
assigned the same amount of work (or at least as close as possible) 
 

• Minimize communications overhead 

• Try to overlap communication and computation 

• Avoid unnecessary serialization or synchronization events 

• Send fewer large message rather than more small messages 
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Load balancing in OpenMP code 

 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

  // All iterations take same amount of time 

} 

 

#pragma omp parallel for schedule(dynamic,n) 

for (i=0; i<n; i++) { 

  // Iterations take different times 

  // May need to experiment with “n” 

  // Use n=1 if orders of magnitude variation in run time 

} 

 

If all iterations take the same amount of time, static decomposition 
is fine. Otherwise, consider dynamic assignment of work. 
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Avoid serialization in OpenMP code 

 

#pragma omp parallel for 

for (i=0; i<n; i++) { 

  y[i] = x[i] + w[i]*z[i]; 

  #pragma omp critical 

  ysum += y[i] 

} 

Look for ways to avoid synchronization events in loops. Consider 
reduction variables or restructuring of logic 

All other threads are idle waiting for the 

active thread to exit the critical region 

#pragma omp parallel for reduction(+:ysum) 

for (i=0; i<n; i++) { 

  y[i] = x[i] + w[i]*z[i]; 

  ysum += y[i] 

} 
Code will be generated to calculate 

partial sums and collect results after 

loop 
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Avoid synchronization in MPI code 

 

Do_some_work; 

MPI_Barrier( MPI_COMM_WORLD ); 

Do_some_more_work; 

MPI_Barrier( MPI_COMM_WORLD ); 

Do_some_more_work; 
 

 

Think about whether or not synchronization is really needed 

Will removing these change my 

results? 


