
SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Introduction to Performance Tuning
and Optimization

Boulder, CO
July 16, 2015

Robert Sinkovits

San Diego Supercomputer Center

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

ssh trainXX@gordon.sdsc.edu

cp ~sinkovit/OptimizationExamples.tar .

tar -xf OptimizationExamples.tar

Logging in and accessing examples

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Why optimize your code

 • Computer time is a limited resource. Time on XSEDE systems is
free**, but awarded on a competitive basis – very few big users get
everything they want. Time on Amazon Web Services or other cloud
providers costs real dollars. Maintaining your own cluster/workstation
requires both time and money.

• Optimizing your code will reduce the time to solution. Challenging
problems become doable. Routine calculations can be done quickly
enough to allow time for exploration and experimentation. In short, you
can get more science done in the same amount of time.

• Even if computer time was free, running a computation still
consumes energy. There’s a lot of controversy over how much energy
is used by computers and data centers, but estimates are that they
account for 2-10% of total national energy usage.

** XSEDE resources are not really free since someone has to pay. The NSF directly, tax payers
indirectly. Average US citizen paid about $0.07 to deploy and operate Gordon over it’s lifetime

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

… but I have a parallel code and processors are getting
faster, cheaper and more energy efficient

• There will always be a more challenging problem that you want to solve

in a timely manner

• Higher resolution (finer grid size, shorter time step)

• Larger systems (more atoms, molecules, particles …)

• More accurate physics

• Longer simulations

• More replicates, bigger ensembles, better statistics

• Most parallel applications have a limited scalability

• For the foreseeable future, there will always be limitations on availability
of computation and energy consumption will be an important
consideration

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Guidelines for software optimization

 The prime directive of software optimization: Don’t break anything!

Getting correct results slowly is much better than getting wrong results quickly

• Don’t obfuscate your code unless you have a really good reason (e.g. kernel
in a heavily used code accounts for a lot of time)

• Clearly document your work, especially if new code looks significantly different

• Optimize for the common case

• Know when to start/stop

• Maintain portability. If you need to include modifications that are architecture or
environment specific, use preprocessor directives to isolate key code

• Profile, optimize, repeat – new hotspots may emerge

• Make use of optimized libraries. Unless you are a world-class expert, you are
not going to write a faster matrix multiply, FFT, eigenvalue solver, etc.

• Understand capabilities and limitations of your compiler. Use compiler
options (e.g. -O3, -xHost) for best performance

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Know when to start / stop

Knowing when to start

• Is the code used frequently/widely enough to justify the effort?

• Does the code consume a considerable amount of computer time?

• Is time to solution important?

• Will optimizing your code help you solve new sets of problems?

Knowing when to stop

• Have you reached the point of diminishing returns?

• Is most of the remaining time spent in routines beyond your control?

• Will your limited amount of brain power and/or waking hours be better
spent doing your research than optimizing the code?

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Intel’s Math Kernel Library (MKL)

Highly optimized mathematical library. Tuned
to take maximum advantage of Intel
processors. This is my first choice when
running on Intel hardware.

Linear algebra (including implementations of
BLAS and LAPACK), eigenvalue solvers,
sparse system solvers, statistical and math
functions, FFTs, Poisson solvers, non-linear
optimization

Many of the routines are threaded. Easy way
to get shared memory parallelism for running
on a single node.

Easy to use. Just build executable with -mkl
flag and add the appropriate include
statement to your source (e.g. mkl.h)

https://software.intel.com/en-us/mkl_11.1_ref

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Identify hotspots with gprof

gprof is a profiling tool for UNIX/Linux applications. First developed in
1982, it is still extremely popular and very widely used. It is always the first
tool that I use for my work.

Universally supported by all major C/C++ and Fortran compilers

Extremely easy to use

1. Compile code with -pg option: adds instrumentation to executable

2. Run application: file named gmon.out will be created.

3. Run gprof to generate profile: gprof a.out gmon.out

Introduces little overhead

Output is easy to interpret

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

1982!

Worth reflecting on the fact that gprof goes back to 1982. Amazing when
considered in context of the leading technology of the day

Cray X-MP with 105 MHz processor. High end

configuration (four CPUs, 64 MB memory) has

800 MFLOP theoretical peak. Cost ~ $15M

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

gprof flat profile

 The gprof flat profile is a simple listing of functions/subroutines ordered by their
relative usage. Often a small number of routines will account for a large majority of
the run time. Useful for identifying hot spots in your code.

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 68.60 574.72 574.72 399587 1.44 1.44 get_number_packed_data

 13.48 687.62 112.90 main

 11.60 784.81 97.19 182889 0.53 0.53 quickSort_double

 2.15 802.85 18.04 182889 0.10 0.63 get_nearest_events

 1.52 815.56 12.71 __c_mcopy8

 1.28 826.29 10.73 _mcount2

 0.96 834.30 8.02 22183 0.36 0.36 pack_arrays

 0.12 835.27 0.97 __rouexit

 0.08 835.94 0.66 __rouinit

 0.06 836.45 0.51 22183 0.02 5.58 Is_Hump

 0.05 836.88 0.44 1 436.25 436.25 quickSort

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

gprof call graph

 The gprof call graph provides additional levels of detail such as the exclusive time
spent in a function, the time spent in all children (functions that are called) and
statistics on calls from the parent(s)

index % time self children called name

[1] 96.9 112.90 699.04 main [1]

 574.72 0.00 399587/399587 get_number_packed_data [2]

 0.51 123.25 22183/22183 Is_Hump [3]

 0.44 0.00 1/1 quickSort [11]

 0.04 0.00 1/1 radixsort_flock [18]

 0.02 0.00 2/2 ID2Center_all [19]

 574.72 0.00 399587/399587 main [1]

[2] 68.6 574.72 0.00 399587 get_number_packed_data [2]

 0.51 123.25 22183/22183 main [1]

[3] 14.8 0.51 123.25 22183 Is_Hump [3]

 18.04 97.19 182889/182889 get_nearest_events [4]

 8.02 0.00 22183/22183 pack_arrays [8]

 0.00 0.00 22183/22183 pack_points [24]

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

The value of re-profiling

 After optimizing the code, we find that the function main() now accounts for 40% of
the run time and would be a likely target for further performance improvements.

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 41.58 36.95 36.95 main

 26.41 60.42 23.47 22183 1.06 1.06 get_number_packed_data

 11.58 70.71 10.29 __c_mcopy8

 10.98 80.47 9.76 182889 0.05 0.05 get_nearest_events

 8.43 87.96 7.49 22183 0.34 0.34 pack_arrays

 0.57 88.47 0.51 22183 0.02 0.80 Is_Hump

 0.20 88.65 0.18 1 180.00 180.00 quickSort

 0.08 88.72 0.07 _init

 0.05 88.76 0.04 1 40.00 40.00 radixsort_flock

 0.02 88.78 0.02 1 20.00 20.00 compute_position

 0.02 88.80 0.02 1 20.00 20.00 readsource

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Limitations of gprof

• gprof only measures time spent in user-space code and does not

account for system calls or time waiting for CPU or I/O

• gprof has limited utility for threaded applications (e.g. parallelized using
OpenMP or Pthreads) and will normally only report usage for thread 0

• gprof can be used for MPI applications and will generate a gmon.out.id
file for each MPI process. But for reasons mentioned above, it will not
give an accurate picture of the time spent waiting for communications

• gprof will not report usage for un-instrumented library routines

• In the default mode, gprof only gives function level rather than
statement level profile information. Although it can provide the latter by
compiling in debug mode (-g) and using the gprof -l option, this
introduces a lot of overhead and disables many compiler optimizations.

In my opinion, I don’t think this is such a bad thing. Once a function has
been identified as a hotspot, it’s usually obvious where the time is being
spent (e.g. statements in innermost loop nesting)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

MKL vs. non-MKL Exercise

 • Copy the lineq_mkl.c and lineq_nomkl.c files to your home directory.
The program generates a random vector and matrix of rank N, calls the
linear solver DGESV (Ax=b) then reports run time.

• Compile using the following commands

icc -xHost -O3 -o lineq_mkl lineq_mkl.c -mkl

icc -xHost -O3 -o lineq_nomkl lineq_nomkl.c -L/opt/lapack/intel/lib -lblas
-llapack -lm

• On a Gordon compute node, set OpenMP threads to 1, run the two
programs using a variety of problem sizes and note run times. Repeat
using 2, 4, 8 and 16 threads

module load lapack
export OMP_NUM_THREADS=1
numactl --physcpubind=0 ./lineq_nomkl 3000
export OMP_NUM_THREADS=4
numactl --physcpubind=0-3 ./lineq_mkl 3000

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

gprof Exercise #1

 • Copy the gprof_ex.f file to your home directory. Compile using the
following command

ifort -pg -O3 -o gprof_ex1 gprof_ex1.f

• Grab an interactive Gordon compute node

• Run as follows

time ./gprof_ex1 100000000

• Generate profile and examine results

gprof gprof_ex1 gmon.out > profile_gpex1

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

gprof example 1 (examining call tree)

 0.85 5.23 1/1 MAIN__ [3]

[6] 12.4 0.85 5.23 1 sub1_ [6]

 4.05 0.00 100000000/100000000 f2_ [7]

 1.18 0.00 100000000/200000000 f1_ [8]

 4.05 0.00 100000000/100000000 sub1_ [6]

[7] 8.2 4.05 0.00 100000000 f2_ [7]

 1.18 0.00 100000000/200000000 sub1_ [6]

 1.18 0.00 100000000/200000000 sub2_ [9]

[8] 4.8 2.36 0.00 200000000 f1_ [8]

 0.39 1.18 1/1 MAIN__ [3]

[9] 3.2 0.39 1.18 1 sub2_ [9]

 1.18 0.00 100000000/200000000 f1_ [8]

• sub1 called by MAIN once

• calls f2 10^8

• calls f1 10^8

• f2 called by sub1 10^8

• f1 called by sub1 10^8

• f1 called by sub2 10^8

• sub2 called by MAIN once

• calls f1 10^8

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Manually instrumenting codes

• Performance analysis tools ranging from the venerable (gprof) to the

modern (TAU) are great, but they all have several downsides

• May not be fully accurate

• Can introduce overhead

• Sometimes have steep learning curves

• Once you really know your application, your best option is to add your
own instrumentation. Will automatically get a performance report every
time you run the code.

• There are many ways to do this and we’ll explore portable solutions in
C/C++ and Fortran. Note that there are heated online discussions
arguing over how to best measure wall times. You can safely ignore
when working at a high level of granularity

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Linux time utility

$ export OMP_NUM_THREADS=16 ; time ./lineq_mkl 30000

Times to solve linear sets of equations for n = 30000

t = 70.548615

real 1m10.733s wall time

user 17m23.940s CPU time summed across all cores

sys 0m2.225s

If you just want to know the overall wall time for your application, can use
the Linux time utility. Reports three times

• real – elapsed (wall clock) time for executable

• user – CPU time integrated across all cores

• sys – system CPU time

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Manually instrumenting C/C++ codes

struct timeval tv_start, tv_end;

gettimeofday(&tv_start, NULL);

// block of code to be timed

gettimeofday(&tv_end, NULL);

elapsed = (tv_end.tv_sec - tv_start.tv_sec) +

 (tv_end.tv_usec - tv_start.tv_usec) / 1000000.0;

The C gettimeofday() function returns time from start of epoch (1/1/1970)
with microsecond precision. Call before and after the block of code to be
timed and perform math using the tv_sec and tv_usec struct elements

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Manually instrumenting Fortran codes

integer clock1, clock2;

double precision elapsed_time

call system_clock(clock1)

// block of code to be timed

call system_clock(clock2)

time = elapsed_time(clock1, clock2)

The Fortran90 system_clock function returns number of ticks of the
processor clock from some unspecified previous time. Call before and
after the block of code to be timed and perform math using the
elapsed_time function (see next slide)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Manually instrumenting Fortran codes (cont)

double precision function elapsed_time(c1, c2)

implicit none

integer, intent(in) :: c1, c2

integer ticks, clockrate, clockmax

call system_clock(count_max=clockmax, count_rate=clockrate)

ticks = c2-c1

if(ticks < 0) then

 ticks = clockmax + ticks

endif

elapsed_time = dble(ticks)/dble(clockrate)

return

end function elapsed_time

Using system_clock can be a little complicated since we need to know the
length of a processor cycle and have to be careful about how we handle
overflows of counter. Write this once and reuse everywhere.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

A note on granularity

elapsed = 0.0;

for (i=0; i<n; i++) {

 w[i] = x[i] * y[i];

 gettimeofday(&tv_start, NULL);

 z[i] = sqrt(w[i]) + x[i];

 gettimeofday(&tv_end, NULL);

 elapsed += (tv_end.tv_sec - tv_start.tv_sec) +

 (tv_end.tv_usec - tv_start.tv_usec) / 1000000.0;

}

Don’t try to time at too small a level of granularity, such as measuring the
time associated with a single statement within a loop

Although they’re pretty lightweight, there is still a cost associated with calls
to gettimeofday or system_clock. In addition, the insertion of these calls
into loops can impact the flow and hamper optimizations by the compiler.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility of optimized codes

• Bit-wise reproducibility means obtaining exactly the same binary

(internal machine representation) results

• An ASCII dump (formatted output) may look the same but can hide
differences in the floating point representation if too few significant
digits are printed

• Think about whether or not you really need bit-wise reproducibility and
under which conditions (compiler, hardware, processor count). Can be
done, but not without tradeoffs.

• Decide how much accuracy is needed. Is it acceptable to get a result
that is correct to within a specified tolerance? Consider constructing a
test suite that can be used to test reproducibility.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Confirming bit-wise reproducibility

 md5sum can confirm that results are exactly the same. Uses a 128-bit
cryptographic hash function to generate digital fingerprint of file. Hash collisions
are possible, but probability is astronomically low.

$ ls -lh *

-rw-r--r-- 1 sinkovit use300 6.1M May 2 08:31 fleeting_ref_AAPL_050610.csv

-rw-r--r-- 1 sinkovit use300 101M May 2 08:31 msg_AAPL_050610.csv

-rw-r--r-- 1 sinkovit use300 83M May 2 08:31 settled_AAPL_050610.csv

$ md5sum *

d7dcee609d3536d072875856d1a0c253 fleeting_ref_AAPL_050610.csv

f8655644fb37eedd1c30b8e58fe79d50 msg_AAPL_050610.csv

b77eaed47a1dc94eb75efb1d2a32432d settled_AAPL_050610.csv

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Note on md5sum

 • The MD5 algorithm should not be used in cases where security is an issue
(digital signatures or public key certificates)

• MD5 is perfectly fine for non-secure applications where tampering would not be
suspected (file transfers, confirming program output)

• More secure hash functions exist (SHA-256 or SHA-512), but they’ll take longer

utility time hash

md5sum 13.12 cbf7e312c83db7d2d27ca3f571ee0de3

sha256sum 41.27
44b2335f1d98d5b06f28e95cc46c238a6963140b4f1

83f9223b1dc46c81f5673

sha512sum 28.90

6d09ec0c4d6db9ff64a2f9633947412ece884b92680

60c6a40c8056e38c8d5ded4d3d13c8840592db9efc

3dccbce22ac5a673993f56e2f6e1af0cb57690f447e

Timings obtained on Gordon compute node (Intel E5-2670 2.6 GHz) using 6.1 GB ASCII file

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Looking for differences in ASCII files

 md5sum is a great way to tell if files are identical, but is useless if there are even
small differences between runs. The Linux diff utility can be used instead, provides
details of the differences.

$ wc -l file1 file2

 464691 file1 Files are exactly the same length (good sign)

 464691 file2

$ md5sum file1 file2

13b71bb7b8274c1657b815735046e411 file1 Ugh, different md5sums

0234c9a3dbc4b94ade7822edc3ae2f61 file2

$ diff file1 file2

1c1

< Fri Jun 27 12:36:02 PDT 2014 Different time stamps

> Fri Jun 27 12:35:46 PDT 2014

464691c464691

< Run time: 1236.78 seconds Different run times

> Run time: 1234.56 seconds

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Looking for differences in ASCII files

 If the acceptable changes (e.g. time stamps, run times, node names) between
output files occur in predictable formats and or locations, we can make clever use
of sed, grep, head, tail and other utilities to build more complex tests

$ diff file1 file2

1c1

< Fri Jun 27 12:36:02 PDT 2014 First line of output

> Fri Jun 27 12:35:46 PDT 2014

464691c464691

< Run time: 1236.78 seconds Last line of output / only line containing string ‘Run time’

> Run time: 1234.56 seconds

$ sed -n '1!p' file1 | grep -v 'Run time' | md5sum

3169c7872c74b2e1593dcde1f4d7f2be -

$ sed -n '1!p' file2 | grep -v 'Run time' | md5sum

3169c7872c74b2e1593dcde1f4d7f2be -

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Using diff on directories

 We can use diff to recursively compare the contents of entire directories as long as
the files are named identically.

-r = recursive --brief = only report whether files differ

This will work for both plain text and binary files

$ diff -r --brief DIR1/ DIR2/

$ no output – directory contents identical

$ diff -r --brief DIR1 DIR2

Only in DIR2: file1 Unique to DIR2

Only in DIR1: file2 Unique to DIR1

Files DIR1/fleeting_ref_AAPL_050610.csv Files differ – no details provided

and DIR2/fleeting_ref_AAPL_050610.csv differ

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

A very brief intro to sed, grep, head, tail

 grep prints the lines in a file that
match (or don’t match) a particular
pattern

$ grep bird file1 # Has bird

line2 bird dog cat

line3 fish cat bird

$ grep -v dog file1 # Not has dog

line3 fish cat bird

 head prints the top of a file

$ head -n1 file1 # First line

line1 dog fish cat

$ head -n2 file1 # First two lines

line1 dog fish cat

line2 bird dog cat

tail prints the bottom of a file

$ tail -n1 file1 # Last line

line3 fish cat bird

$ tail -n2 file1 # Last two lines

line2 bird dog cat

line3 fish cat bird

sed is a powerful stream editor that
(among many other capabilities)
selects lines by record number

$ sed -n ‘2p’ file1 # Line 2

line2 bird dog cat

$ sed -n ‘2!p’ file1 # All but line 2

line1 dog fish cat

line3 fish cat bird

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility in integer/string codes

 Integers and characters are represented exactly. The same program should give
the same results on any system using any compiler. When working with integers,
just need to be aware of a few potential gotchas when modifying your software

(1) Division results are truncated. As a consequence, some basic arithmetic
identities are not integer math identities

(a/b) + (c/d) ≠ (ad + bc)/bd

(2/3) + (5/2) = 0 + 2 = 2

(22 + 53)/(23) = 19/6 = 3

(2) Avoid modifications to order of operations that might result in overflows

Σ(all terms) =(?) Σ(neg terms) + Σ(pos terms)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Reproducibility in floating point codes

 FP operations are subject to round-off error and seemingly trivial code modifications
or changes to run conditions can change the answers. If any of the following lead to
significantly different results, you should re-examine your algorithms

(1) Arithmetic identities that are not necessarily floating point identities.

(a + b) + c ≠ a + (b + c)
(a/b) + (c/d) ≠ (ad + bc)/bd

sqrt(sqrt(a)) ≠ a0.25

(2) Software parallelization, particularly involving global reduction operations (e.g.
summing over elements of an array). The exact answers may depend on the
number of threads and/or processes.

(3) Aggressive compiler optimization (typically -O3 and higher) may lead to code
modifications that do not preserve bit-wise reproducibility

(4) Running on different processor architectures or linking different library versions

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Random number generation

 Many applications rely on random number generators to set the initial conditions or
perform Monte Carlo simulations. If developing your own software, do yourself a big
favor and provide the capability to set the seed.

Can make this an optional argument that overrides the default behavior. Otherwise,
you’ll never be sure that the modified version of the software is correct

 $./a.out -i infile -o outfile … [-seed 1234]

Seems obvious, but surprising how many code implement something like the
following without documenting behavior

 srandom(time(0))

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Registers

L1 cache

L2 cache

L3 cache

DRAM

O(10 KB)

O(100 KB)

O(10 MB)

O(10-100 GB)

O(ns)

O(10 ns)

O(10 ns)

O(100 ns)

Disk O(TB - PB)
O(100 µs SSD)

O(ms HDD)

< ns

Memory hierarchy

Fast
Small
$$$$

Slow
Large
Cheap

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Cache essentials

Temporal locality: Data that was recently accessed is likely to be used
again in the near future. To take advantage of temporal locality, once data
is loaded into cache, it will generally remain there until it has to be purged
to make room for new data. Cache is typically managed using a variation
of the Least Recently Used (LRU) algorithm.

Spatial locality: If a piece of data is accessed, it’s likely that neighboring
data elements in memory will be needed. To take advantage of spatial
locality, cache is organized into lines (typically 64 B) and an entire line is
loaded at once.

Our goal in cache level optimization is very simple – exploit the principles
of temporal and spatial locality to minimize data access times

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

One-dimensional arrays

One-dimensional arrays are stored as blocks of contiguous data in memory.

int *x, n=100;

x = (int *) malloc(n * sizeof(int))

Cache optimization for 1D arrays is pretty straightforward and you’ll
probably write optimal code without even trying. Whenever possible, just
access the elements in order.

for (int i=0; i<n; i++) {

 x[i] += 100;

}

x[3] x[2] x[4] x[5] x[6] x[1] x[0] …

0 4 8 12 16 20 24 relative address

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

One-dimensional arrays

What is our block of code doing with regards to cache?

for (int i=0; i<n; i++) {

 x[i] += 100;

}

Assuming a 64-byte cache line and 4-byte integers:

1. Load elements x[0] through x[15] into cache

2. Increment x[0] through x[15]

3. Load elements x[16] through x[31] into cache

4. Increment elements x[16] through x[31]

5. …

In reality, the processor will do really clever things like recognizing the
pattern of data access and prefetching the next cache line before it is
needed.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Multidimensional arrays

Row-major order: Last or rightmost index varies the fastest. Used in
Python, Mathematica and C/C++

From the computer’s point of view, there is no such thing as a two-
dimensional array. This is just syntactic sugar provided as a convenience
to the programmer. Under the hood, array is stored as linear block of data

1 2 3

4 5 6
1 4 2 5 3 6

1 2 3

4 5 6
1 2 3 4 5 6

Column-major order: First or leftmost index varies the fastest. Used
in Fortran, R, MATLAB and Octave (open-source MATLAB clone)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Multidimensional arrays

Properly written Fortran code

do j=1,n ! Note loop nesting

 do i=1,n

 z(i,j) = x(i,j) + y(i,j)

 enddo

enddo

Properly written C code

for (i=0; i<n; i++) { // Note loop nesting

 for (j=0; j<n; j++) {

 z[i][j] = x[i][j] + y[i][j]

 }

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Matrix addition exercise

• Copy the dmadd_good.f and dmadd_bad.f files to your home directory.

Programs perform 2D matrix addition using optimal/non-optimal loop
nesting. Inspect the code and make sure you understand logic.

• Compile programs using the ifort compiler with default optimization
level and explicitly stating -O0, -O1, -O2 and -O3

• On a Gordon compute node, run with matrix ranks 20,000, 30,000 and
40,000 (Programs accept single command line argument specifying the
matrix rank)

• Examples: (feel free to use your own naming conventions)

• ifort -xHost -o dmadd_good_df dmadd_good.f

• ifort -xHost -o dmadd_bad_O3 -O3 dmadd_bad.f

• ./dmadd_good_df 20000

• ./dmadd_bad_O3 30000

• Keep track of the run times (reported by code)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Matrix addition exercise

• Try to explain the timings. Under what optimization levels was

there a big difference between the optimal/non-optimal versions
of the codes?

• What do you think the compiler is doing?

• Why do we have that mysterious block of code after the matrix
addition? What possible purpose could it serve?

• Can you make an educated guess about the default optimization
level?

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop fusion

 One of the most basic loop-level optimizations is loop fusion. Two or more
loops with the same range of iterations are combined into a single loop

for (int i=0; i<n; i++) {

 z[i] = x[i] + y[i]

}

for (int i=0; i<n; i++) {

 w[i] = x[i] * y[i]

}

for (int i=0; i<n; i++) {

 z[i] = x[i] + y[i]

 w[i] = x[i] * y[i]

}

Sometimes the compiler can decide which is optimal (fused or not fused),
but I’ve seen really obvious cases where it doesn’t. My suggestion is to
just try both and see which one is faster. Note that intervening code
between the loops may prevent automatic fusion.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop splitting

 Loop splitting is the opposite of loop fusion. A single loop is split into two or
more loops

for (int i=0; i<n; i++) {

 z[i] = x[i] + y[i]

}

for (int i=0; i<n; i++) {

 w[i] = x[i] * y[i]

}

for (int i=0; i<n; i++) {

 z[i] = x[i] + y[i]

 w[i] = x[i] * y[i]

}

Sometimes the compiler can decide which is optimal (fused or not fused),
but I’ve seen really obvious cases where it doesn’t. My suggestion is to
just try both and see which one is faster.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop fusion exercise

• Copy fusion.f to your home directory

• Compile and run as follows
ifort -xHost -O3 -o fusion fusion.f
numactl --physcpubind=0 ./fusion 40000

• Look for obvious opportunity for loop fusion.

• Can w(i) be computed at same time as z(i)

• Is the array z(i) even needed?

• Compare run times for original and modified codes

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization

 Pull repeated calculation out of loop and use the pre-calculated result in its
place.

sqrtc = sqrt(c);

for (int i=0; i<n; i++) {

 z[i] = x[i] + sqrtc;

}

Compilers can often do this for you, particularly if the loops are simple. Still
suggest that you do this yourself and be guaranteed that the optimization
will be done. No real downsides.

for (int i=0; i<n; i++) {

 z[i] = x[i] + sqrt(c);

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization

 When working with nested loops, the invariants will sometime be less
obvious and may even be a vector of results.

for (i=0; i<nx; i++) {

 for (j=0; j<ny; j++) {

 for (k=0; k<nz; k++) {

 x2y2 = x[i]*x[i] + y[j]*y[j];

 z2 = z[k] * z[k];

 res[i][j][k] = exp(-a*z2) * sqrt(-b*x2y2);

 }

 }

}

x2y2 does not depend

on index k

sqrt(-b*x2y2) does not

depend on index k

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization

 1. Moved calculation of x2 to outermost loop nesting
Evaluated nx times instead of nx*ny*nz

2. Moved calculation of sqrt(x2+y2) out one level of nesting
Evaluated nx*ny times rather than nx*ny*nz

for (i=0; i<nx; i++) {

 x2 = x[i]*x[i];

 for (j=0; j<ny; j++) {

 x2y2 = x2 + y[j]*y[j];

 sqrtx2y2 = sqrt(-b*x2y2);

 for (k=0; k<nz; k++) {

 z2 = z[k] * z[k];

 res[i][j][k] = exp(-a*z2) * sqrtx2y2;

 }

 }

}

z2 does not depend on

indices i or j

exp(-a*z2) does not

depend on indices i or

j

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization

 Pre-calculate vector of exp(-a * z2) results and reuse for every set of (i,j).
Reduces number of exponential evaluations to nz from nx*ny*nz

for (k=0; k<nz; k++) {

 zterm[k] = exp(-a*z[k]*z[k]);

}

for (i=0; i<nx; i++) {

 x2 = x[i]*x[i];

 for (j=0; j<ny; j++) {

 x2y2 = x2 + y[j]*y[j];

 sqrtx2y2 = sqrt(-b*x2y2);

 for (k=0; k<nz; k++) {

 res[i][j][k] = zterm[k] * sqrtx2y2;

 }

 }

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop invariant optimization

 If our result involved exp(-b * (x2+y2)) instead of sqrt(-b*(x2+y2)), we could
have taken things one step further by pre-calculating three vectors.
Innermost loop would only involve multiplications

for (i=0; i<nx; i++) { xterm[i] = exp(-b * x[i]*x[i]); }

for (j=0; j<ny; j++) { yterm[j] = exp(-b * y[j]*y[j]); }

for (k=0; k<nz; k++) { zterm[k] = exp(-a * z[k]*z[k]); }

for (i=0; i<nx; i++) {

 for (j=0; j<ny; j++) {

 for (k=0; k<nz; k++) {

 res[i][j][k] = xterm[i] * yterm[j] * zterm[k];

 }

 }

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop peeling

 In a loop peeling optimization, one or more iterations are pulled out of the
loop. Avoids unnecessary calculations associated with special iterations;
also allows fusion of loops with slightly different iteration ranges

The example above illustrates how peeling off the first iteration of the first
loop (i=0) both avoids special case (product instead of sum) and allows
fusion with the following loop

for (int i=0; i<n; i++) {

 if (i == 0) {

 z[i] = x[i] * y[i];

 }

 z[i] = x[i] + y[i]

}

for (int i=1; i<n; i++) {

 w[i] = x[i] * y[i]

}

z[0] = x[0] * y[0];

for (int i=1; i<n; i++) {

 z[i] = x[i] + y[i]

 w[i] = x[i] * y[i]

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop unrolling

 Loop body is replicated and the stride is modified accordingly. This optimization
can help the processor make better use of arithmetic functional units.

for (int i=0; i<1024; i++) {

 z[i] = x[i] + y[i]

}

for (int i=0; i<1024; i+=4) {

 z[i] = x[i] + y[i]

 z[i+1] = x[i+1] + y[i+1]

 z[i+2] = x[i+2] + y[i+2]

 z[i+3] = x[i+3] + y[i+3]

}

Note that this example is particularly simple since the loop count is divisible by
the unrolling depth. In general, you’ll need to write cleanup code to handle the
leftover iterations (remainder of n/depth).

You will rarely beat the compiler and manual loop unrolling will make your code
ugly and difficult to maintain. Best choice for unrolling depth may be processor
architecture dependent.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Loop unrolling

 Although you’ll rarely beat the compiler, sometimes you’ll encounter a loop that
is too complex for it to accurately analyze. Below is an example where manual
loop unrolling by 4x did better than the compiler (original loop shown)

do i=0,4319,2 ! Unrolled loop i=0,4319,8

 j0=mg63_miijj(0,i)

 j1=mg63_miijj(1,i)

 j2=mg63_miijj(2,i)

 i0=mg63_miijj(3,i)

 i1=mg63_miijj(4,i)

 i2=mg63_miijj(5,i)

 i3=mg63_miijj(6,i)

 pvi3jj(1) = pvi3jj(1) + d(i0,i1)*d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1)

 pvi3jj(2) = pvi3jj(2) + d(i0,i1)*d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i0,j1)

 pvi3jj(3) = pvi3jj(3) + d(i0,i1)*d(i1,i2)*d(i1,i3)*d(i0,j0)*d(i0,j1)

 ...

 pvi3jj(22) = pvi3jj(22) + d(i0,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)

 pvi3jj(23) = pvi3jj(23) + d(i1,i2)*d(i0,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)

 pvi3jj(24) = pvi3jj(24) + d(i0,i2)*d(i2,i3)*d(i0,j0)*d(i1,j0)*d(j0,j1)

enddo

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Breaking out of loop early

 Look for opportunities to break out of a loop early. This will generally require
that you understand the semantics of your code

for (int i=0; i<n; i++) {

 if (y[i] < const) {

 // Do stuff

 }

}

for (int i=0; i<n; i++) {

 if (y[i] >= const) {

 break;

 } else {

 // Do stuff

 }

}

In this simple example (taken from real-life application), I used my knowledge
that the elements of array y are monotonically increasing (y[0] ≤ y[1] ≤ y[2] ≤
y[3] …). The compiler only understands the syntax of your code and cannot
safely do this optimization for you.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short loop optimizations / special cases

 If you expect that a loop body may be executed for a small number of iterations,
can generate code for special cases.

for (dm=0; dm<num_dm; dm++) {

 df = ngc[p][dm] – nd[i][dm];

 dist = dist + df*df;

}

switch(num_dm)

case 1:

 df0 = ngc[p][0] - nd[i][0];

 dist = df0*df0;

 break;

case 2:

 df0 = ngc[p][0] - nd[i][0];

 df1 = ngc[p][1] - nd[i][1];

 dist = df0*df0 + df1*df1;

 break;

[Additional cases]

default:

 for (dm=0; dm<num_dm; dm++) {

 df = ngc[p][dm] – nd[i][dm];

 dist = dist + df*df;

 }

 break;

Note - stripped down example taken from flow
cytometry clustering code. In full application,
loop is nested within two additional loops. May
not have obtained much speedup as shown

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short loop optimizations / special cases

 Example taken from optimization of MPAS scalar advection routine. Optimized
for the special (and overwhelmingly most common case) where cell is hexagon.
Retained the original code as the default case

select case(nEdgesOnCell(iCell))

case(6)

 do k=1, nVertLevels

 s_max(k,iCell) = max(s_max(k,iCell),&

 scalar_old(k, cellsOnCell(1,iCell)), &

 scalar_old(k, cellsOnCell(2,iCell)), &

 scalar_old(k, cellsOnCell(3,iCell)), &

 scalar_old(k, cellsOnCell(4,iCell)), &

 scalar_old(k, cellsOnCell(5,iCell)), &

 scalar_old(k, cellsOnCell(6,iCell)))

case default

 do i=1, nEdgesOnCell(iCell)

 do k=1, nVertLevels

 s_max(k,iCell) = max(s_max(k,iCell),scalar_old(k, cellsOnCell(i,iCell)))

 end do

 end do

end select

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short loop optimizations / special cases

 More complex example from MPAS scalar advection routines for special case of
pairs of neighboring hexagonal cells

select case(nAdvCellsForEdge(iEdge))

case(10)

 do jj=1,10

 ica(jj) = advCellsForEdge(jj,iEdge)

 swa(jj,1) = adv_coefs(jj,iEdge) + coef_3rd_order*adv_coefs_3rd(jj,iEdge)

 swa(jj,2) = adv_coefs(jj,iEdge) - coef_3rd_order*adv_coefs_3rd(jj,iEdge)

 enddo

 do k=1,nVertLevels

 ii = merge(1, 2, uhAvg(k,iEdge) > 0)

 flux_arr(k,iEdge) = uhAvg(k,iEdge)*(swa(1,ii)*scn(k,ica(1)) &

 + swa(2,ii)*scn(k,ica(2)) + swa(3,ii)*scn(k,ica(3)) + swa(4,ii)*scn(k,ica(4)) &

 + swa(5,ii)*scn(k,ica(5)) + swa(6,ii)*scn(k,ica(6)) + swa(7,ii)*scn(k,ica(7)) &

 + swa(8,ii)*scn(k,ica(8)) + swa(9,ii)*scn(k,ica(9)) + swa(10,ii)*scn(k,ica(10)))

 enddo

case default

 do i=1,nAdvCellsForEdge(iEdge)

 iCell = advCellsForEdge(i,iEdge)

 do k=1,nVertLevels

 scalar_weight = uhAvg(k,iEdge)*(adv_coefs(i,iEdge) + &

 coef_3rd_order*sign(1.0_RKIND,uhAvg(k,iEdge))*adv_coefs_3rd(i,iEdge))

 flux_arr(k,iEdge) = flux_arr(k,iEdge) + scalar_weight* scn(k,iCell)

 end do

 end do

end select

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short loop optimizations / special cases

 More complex example from MPAS scalar advection routines for special case of
pairs of neighboring hexagonal cells

select case(nAdvCellsForEdge(iEdge))

case(10)

 do jj=1,10

 ica(jj) = advCellsForEdge(jj,iEdge)

 swa(jj,1) = adv_coefs(jj,iEdge) + coef_3rd_order*adv_coefs_3rd(jj,iEdge)

 swa(jj,2) = adv_coefs(jj,iEdge) - coef_3rd_order*adv_coefs_3rd(jj,iEdge)

 enddo

 do k=1,nVertLevels

 ii = merge(1, 2, uhAvg(k,iEdge) > 0)

 flux_arr(k,iEdge) = uhAvg(k,iEdge)*(swa(1,ii)*scn(k,ica(1)) &

 + swa(2,ii)*scn(k,ica(2)) + swa(3,ii)*scn(k,ica(3)) + swa(4,ii)*scn(k,ica(4)) &

 + swa(5,ii)*scn(k,ica(5)) + swa(6,ii)*scn(k,ica(6)) + swa(7,ii)*scn(k,ica(7)) &

 + swa(8,ii)*scn(k,ica(8)) + swa(9,ii)*scn(k,ica(9)) + swa(10,ii)*scn(k,ica(10)))

 enddo

case default

 do i=1,nAdvCellsForEdge(iEdge)

 iCell = advCellsForEdge(i,iEdge)

 do k=1,nVertLevels

 scalar_weight = uhAvg(k,iEdge)*(adv_coefs(i,iEdge) + &

 coef_3rd_order*sign(1.0_RKIND,uhAvg(k,iEdge))*adv_coefs_3rd(i,iEdge))

 flux_arr(k,iEdge) = flux_arr(k,iEdge) + scalar_weight* scn(k,iCell)

 end do

 end do

end select

Precalculated quantities used in

following loop

Pushed inside loop over vertical

levels and expanded loop body for

case=10

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Select case gotcha

• When applying this type of optimization, may want to only do for a limited

number of special/common cases. If the number of cases becomes too large,
compiler may choke due to complexity of code.

• Limiting cases – especially those corresponding to rare conditions – keeps
the code cleaner and easier to read

• This caught me by surprise since I expected that each case would have been
optimized separately by the compiler

• Note that chained if … else if statements are not a workaround. Appear to be
translated in the same way as select case statement. Ditto for C/C++ switch
case syntax

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Non cache/loop optimizations

• Although there is some overlap between loop and non-loop

optimizations, these techniques are generally applied at the statement
or whole program level.

• The compiler can do some of these for you (e.g. constant propagation).
Others, such as force reduction and (especially) inter-procedural
optimization will usually require that the programmer modify the code.

• Unless it makes your code excessively difficult to read or maintain,
suggest that you do these yourself. Will avoid surprises when using
different versions of compilers or optimization levels.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Obviousness alert!

 Some of the things that I’ll be discussing in this presentation are
completely obvious. That said, they’re still worth pointing out since they
are often overlooked and only become obvious after the fact

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Constant folding

Compiler recognizes constant expressions and evaluates at compile time
rather than performing operations at run time. These are trivial for the
compiler and there’s no reason to do them yourself, especially if the
original code is easier to understand

double precision pi = 2.0d0 * acos(0.0d0)

double precision e = exp(1.0d0)

integer gib = 2**30

double precision pi = 3.14159265358979

double precision e = 2.71828182845904

integer gib = 1073741824

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Constant propagation

Constants are propagated at run time into other expressions that depend
on them. Trivial for the compiler to do these, no reason to implement
manually if it makes code more difficult to read.

int x = 17;

int y = x + 12 – 3;

int z = x + y;

int x = 17;

int y = 26;

int z = 43;

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

If the compiler does this, why are we even
talking about it here?

 Constant folding and propagation depend on the compiler having enough
information to do the optimizations. If your program uses constants, be
sure to code them explicitly.

myfunc(17);

...

void myfunc (int q) {

 int x = q;

 int y = q + 12 – 3;

 int z = q + y;

int x = 17;

int y = 26;

int z = 43;

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction

A force reduction optimization involves the replacement of an expensive
operation with a less expensive one.

Exponentiation operations, especially floating point base raised to a
floating point power, are particular expensive. Look for opportunities to
replace with multiplications, particularly if the exponent is known at
compile time

 pow(x,8.0) x2 = x*x; x4 = x2*x2; x8 = x4*x4

 pow(x,1.5) y = x * sqrt(x)

Fortran and newer versions of C++ overload the pow() function. Use
integer exponent whenever possible

 double precision x,y double precision x

 x**y integer n

 x**n

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction

Operations involving trig functions can often be simplified by using the trig
identifies that you learned in high school. Just make sure that your
transformation apply to all quadrants if applicable

 sin(x)*cos(x) 0.5 * sin(2*x)

 sin(x)*cos(y)+cos(x)*sin(y) sin(x+y)

If a and b are fixed and sum needs to be calculated repeatedly for many
values of x, can pre-calculate the constants c and phi.

 a*sin(x) + b*cos(x) c = sqrt(a*a + b*b)

 phi = atan2(b,a)

 c*sin(x+phi)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction

There are often hidden opportunities for force reductions. Look at logical
tests that can be written in a more efficient way. Think about what results
are really needed.

count = 0;

for (i=0; i<n; i++) {

 if (log(x[i]) < c) {

 count++;

 }

}

count = 0;

expc = exp(c)

for (i=0; i<n; i++) {

 if (x[i] < expc) {

 count++;

 }

}

In this example, we didn’t really need to know the logarithm of x[i] and we
could recast using a simple comparison to a pre-computed value.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Force reduction exercise

• Copy the disttest.c file to your home directory. Program generates a set

of randomly distributed points in the unit square and calculates number
that are separated by less than a specified tolerance. Inspect the code
and make sure you understand logic.

• Compile program using the following options

icc -xHost -O3 -o disttest disttest.c

• Run executables on Gordon compute node and keep track of run times
as reported by code. Try n=10000, 50000, 100000 and various values
for tolerance

numactl --physcpubind=0 ./disttest 50000 0.01

• Apply force reduction optimization to reduce the run time

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting

Many imperative programming languages (MATLAB, Perl, Python, Java,
Fortran, C/C++) use short circuit evaluation for compound logical tests.
Note though that some Fortran compilers do not perform short circuiting.

Disjunctions (‘OR’ tests) evaluate to TRUE once the first argument that
evaluates to TRUE is encountered

Conjunctions (‘AND’ tests) evaluate to FALSE once the first argument
that evaluates to FALSE is encountered

As a consequence, subsequent arguments are not evaluated once the
final result is known. We can take advantage of this to write more efficient
code.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting (disjunction)

Some good rules of thumb for ordering arguments (P || Q)

1. If P and Q take roughly the same amount of time to evaluate, put the
argument that is more commonly TRUE first

if (usually_true || usually_false)
if (sin(x) > 0.01 || cos(y) < 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed

2. If P and Q are vastly different in the time required for evaluation, put
the faster test first

if (fast_test || slow_test)
if (x > y || pow(x,y)/atan2(w,z) > log(sqrt(x/y))

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Short circuiting (conjunction)

Some good rules of thumb for ordering arguments (P && Q)

1. If P and Q take roughly the same amount of time to evaluate, put the
argument that is more commonly FALSE first

if (usually_false && usually_true)
if (cos(y) < 0.01 && sin(x) > 0.01) // 0 ≤ x,y ≤ π/2 uniformly distributed

2. If P and Q are vastly different in the time required for evaluation, put
the faster test first

if (fast_test && slow_test)
if (x > y && pow(x,y)/atan2(w,z) > log(sqrt(x/y))

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid recalculating results

One of the easiest ways to reduce runtime is to avoid calculating a result
multiple times. Sometimes the compiler can recognize this and pre-
calculate the result

Original Compiler will probably do this

a = w + x*x + sqrt(y) temp = x*x + sqrt(y)

b = z + x*x + sqrt(y) a = w + temp

 b = z + temp

For user defined function, compiler needs to be careful of side effects and
may not be able to safely perform the optimization

a = w + x*x + func(y) // Did func change a global variable?

b = z + x*x + func(y) // Will the 2nd call return the same result?

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid recalculating results (cont.)

Pre-calculating results can have an even bigger impact when the result is
calculated repeatedly in a loop body. This is know as a loop invariant
optimization

for (i=0; i<n; i++) {

 a[i] = b[i] + sqrt(c);

}

The compiler will generally recognize simple invariants and pull outside of
the loop. For the above example, the compiler will generate code like the
following

sqrtc = sqrt(c);

for (i=0; i<n; i++) {

 a[i] = b[i] + sqrtc;

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimizations

• Until now, we’ve mostly been focusing on optimizations at the loop or

function level. Inter-procedural optimizations, which require considering
the application as a whole

• Compilers are great at optimizing loops (inversion, unrolling, fusion,
splitting, peeling ,etc.) and statements, but can rarely recognize
opportunities for inter-procedural optimizations.

• These generally require an intimate understanding of your code.

• Very often, this optimization requires that you recognize operations that
are repeated on the same set of data from one invocation of a function
to the next.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)

In a flow-cytometry code, noticed that a function was called five times in a
row with slightly different sets of arguments (diffs highlighted in red)

Ei=get_avg_dist(rpc[temp_i], temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

Ej=get_avg_dist(rpc[temp_j], temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

E1=get_avg_dist(center_1, temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

E2=get_avg_dist(center_2, temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

E3=get_avg_dist(center_3, temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)

 Within the get_avg_dist function, the key loops involve a comparison
between elements of population_ID and the scalars (temp_i, temp_j) to
decide which elements of norm_data are used for the calculations. Recall
that center is the only argument to change between calls and the same
elements of norm_data are used all five times

for (i=0; i<file_Len; i++) {

 if (population_ID[i]==temp_i || population_ID[i]==temp_j) {

 dist1 = center[d1] – norm_data[i][d1];

 dist2 = center[d2] – norm_data[i][d2];

 dist3 = center[d3] – norm_data[i][d3];

 d = dist1*dist1 + dist2*dist2 + dist3*dist3;

 if (d < radius) num_neighbors++

}

get_avg_dist(center, temp_i, temp_j, population_ID,

num_real_pop, file_Len, num_dm, norm_data, d1, d2, d3, size_c);

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 1)

 To avoid having to do the same tests five times in a row, do a “gather”
operation to collect elements of packed data into an array and pass as
argument to a modified get_avg_dist. Led to ~ 3x speedup of program.

npacked = 0;

for (i=0;i<file_Len;i++) {

 if (population_ID[i]==temp_i || population_ID[i]==temp_j){

 packed1[npacked] = norm_data[i][d1];

 packed2[npacked] = norm_data[i][d2];

 packed3[npacked] = norm_data[i][d3];

 npacked++;

 }

}

for (i=0; i<npacked; i++) {

 dist1 = center[d1] – packed1[i];

 dist2 = center[d2] – packed2[i];

 dist3 = center[d3] – packed3[i];

 d = dist1*dist1 + dist2*dist2 + dist3*dist3;

 if (d < radius) num_neighbors++

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)

 In Latent Dirichlet Allocation code (identifies topics in free text), profiling
shows that nearly all time spent in a single method

int model::sampling(int m, int n) {

int topic = z[m][n];

int w = ptrndata->docs[m]->words[n];

nw[w][topic] -= 1;

nd[m][topic] -= 1;

nwsum[topic] -= 1;

ndsum[m] -= 1;

for (int k = 0; k < K; k++) {

 p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) *

 (nd[m][k] + a) / (ndsum[m] + Ka);

}

nw[w][topic] += 1;

nd[m][topic] += 1;

nwsum[topic] += 1;

ndsum[m] += 1;

return topic;

for (int m=0; m<M; m++) {

 for (int n=0; n<N; n++) {

 int topic = sampling(m,n);

 z[m][n] = topic;

 }

}

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)

 Note that sampling(m,n) called repeatedly with same value of m and that
only a few elements of nd, nwsum and ndsum are (temporarily) updated

int model::sampling(int m, int n) {

int topic = z[m][n];

int w = ptrndata->docs[m]->words[n];

nw[w][topic] -= 1;

nd[m][topic] -= 1;

nwsum[topic] -= 1;

ndsum[m] -= 1;

for (int k = 0; k < K; k++) {

 p[k] = (nw[w][k] + b) / (nwsum[k] + Vb) *

 (nd[m][k] + a) / (ndsum[m] + Ka);

}

nw[w][topic] += 1;

nd[m][topic] += 1;

nwsum[topic] += 1;

ndsum[m] += 1;

return topic;

for (int m=0; m<M; m++) {

 for (int n=0; n<N; n++) {

 int topic = sampling(m,n);

 z[m][n] = topic;

 }

}

Potential

invariants

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Inter-procedural optimization (example 2)

 Pre-calculate array of values that do not change (much) across successive
calls to sampling and update only necessary elements

int model::sampling(int m, int n) {

int topic = z[m][n];

nd[m][topic] -= 1;

nwsum[topic] -= 1;

f1[topic] = (nd[m][topic] + a) /

 ((nwsum[topic] + Vb)*

 (ndsum[m] - 1.0 + Ka));

for (int k = 0; k < K; k++) {

 p[k] = (nw[w][k] + b) * f1[k];

}

nd[m][topic] += 1;

nwsum[topic] += 1;

f1[topic] = ...;

for (int m=0; m<M; m++) {

 for (int k = 0; k < K; k++) {

 f1[k] = (nd[m][k] + a) /

 ((nwsum[k] + Vb)*

 (ndsum[m] - 1.0 + Ka));

 }

 for (int n=0; n<N; n++) {

 int topic = sampling(m,n);

 z[m][n] = topic;

 }

}

Entire application is now

1.5-2.2x faster, depending

on number of topics

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Unique optimizations

• Standard techniques will take you a long way, but sometimes you get

the biggest payoffs from novel, one-off optimizations

• These are also the most fun optimizations. To me, it’s like getting paid
to do brain ticklers

• Often requires a more intimate understanding of your application

• Once you’ve identified your hotspot, single-mindedly focus your efforts
on a better, faster solution

• Hard to provide concrete advice since the optimizations tends to be
very problem specific. In many cases though, they require little
advanced knowledge beyond high school algebra, trig and geometry

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Approximate expensive function and redo
accurate calculation only when necessary

Fortran application was spending most of its time calculating inverse
cosine (acos) function. Result used in test that is rarely satisfied

if (acos(xprod) < abs(xi-xj)) then

 -- do some calculations --

endif

Google search found an inexpensive approximation (20x faster) to inverse
cosine (π/2 - Ax5 - Bx) with a known maximum error. Use for initial test and
recalculate acos only when needed. Note that this has no impact on final
results

if(acos_approx(xprod) < abs(xi-xj) + max_err) then

 if(acos(xprod) < abs(xi-xj) then

 -- do some calculations --

 endif

endif

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs

Many problems in bioinformatics, statistical physics and other fields
require the calculation of log probabilities. The direct product over small
probabilities results in underflow, so we need to calculate sum over logs
instead

Want log(pi

i=1

n

Õ), but pi
i=1

n

Õ underflows

Instead, calculate log(pi
i=1

n

å)

The downside is that the latter is n times more expensive. This can have a
big impact on performance if n is large and/or log probabilities are
frequently calculated

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs (cont.)

To avoid the expensive logarithm calculations, first split arguments into
normalized fractions (1/2 ≤ x < 1) and powers of two. Can do this with the
very fast C frexp function. Then accumulate product over fractions, sum
over powers of two and do a little algebra at the end

 5 x 17 x 37 = (0.625 x 23) x (0.53125 x 25) x (0.578125 x 26)

 = (0.625 x 0.53125 x 0.578125) x 214

 = 0.1919556 x 214

 log(5 x 17 x 37) = log(0.1919556) + log(2.0) x 14 = 3.49762 ✔

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Fast calculation of sum over logs (cont.)

What if the product over fractions underflows? Multiply by constant to keep
product close to one and correct for this later. Assumes that the fractional
parts of the arguments are uniformly distributed between ½ and 1. Here’s
the final solution

c=1.358858;

sprod = 1.0;

xsum = 0.0;

for (i=0; i<n; i++) {

 s = frexp(p[i], &x); // Split into fraction and power of 2

 sprod *= (s * c); // Product over fractions, with correction

 xsum += x; // Sum over powers of two

}

logsum = log(sprod) + log(2.0)*xsum - n*log(c);

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

log sum exercise

• Copy the logsum.c file to your home directory. Program performs log

sum using both standard and optimized method. Inspect the code and
make sure you understand logic.

• Compile program using the following options

gcc -O3 -o logsum_gcc logsum.c -lm
icc -O3 -o logsum_icc logsum.c

• Run executables on Gordon compute node and keep track of run times
as reported by code. Try altering the following (line 15), but keeping
n*m constant

• n (number of contributions to log sum)

• m (number of trials)

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

log sum exercise

• Are there any noticeable differences between the timings for the

Intel (icc) and GNU (gcc) compilers?

• Did you notice any trends in the ratio of run times as a function
of problem size?

• If you noticed a difference between the compilers why do you
think this happened?

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Linear algebra - DSYRK

After initial rounds of optimization, determined that application was spending most
of its time in the DSYRK linear algebra routine

D αAAT + βC (A and C matrices, α and β and constants)

Figured that there was no room left for improvement, then took a more careful look
at the way the matrix A is constructed from the concatenation of two matrices

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=

b11 b12 c11 c12

b21 b22 c21 c22

b31 b32 c31 c32

b41 b42 c41 c42

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

= B Cé
ë

ù
û

AAT = B Cé
ë

ù
û B Cé
ë

ù
û

T

= B Cé
ë

ù
û
BT

CT

é

ë
ê
ê

ù

û
ú
ú
= BBT +CCT

Rewrite A as

concatenation of

two matrices A

and B

AAT can be

expressed as

BBT + CCT

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Linear algebra - DSYRK (cont.)

Further inspection revealed that the nested loops over indices provides
opportunities for pre-calculating the partial results (BBT, CCT) and replacing the
DSYRK call with a much faster matrix addition.

Loop over i (i:n)

 Xi BiBi
T

 Yi CiCi
T

Loop over i (i:n)

 Loop over j (i:n)

 R Xi + Yj

 ...

Loop over i (1:n)

 Loop over j (1:n)

 A [Bi Cj]

 R DSYRK(A)

 ...

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

A few words about optimizing parallel codes

• Fast parallel codes depend on fast underlying serial algorithms

• We don’t have time to get into optimization of parallel algorithms, but
here are a few things to consider

• Address load balancing – make sure that each process or thread is
assigned the same amount of work (or at least as close as possible)

• Minimize communications overhead

• Try to overlap communication and computation

• Avoid unnecessary serialization or synchronization events

• Send fewer large message rather than more small messages

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Load balancing in OpenMP code

#pragma omp parallel for

for (i=0; i<n; i++) {

 // All iterations take same amount of time

}

#pragma omp parallel for schedule(dynamic,n)

for (i=0; i<n; i++) {

 // Iterations take different times

 // May need to experiment with “n”

 // Use n=1 if orders of magnitude variation in run time

}

If all iterations take the same amount of time, static decomposition
is fine. Otherwise, consider dynamic assignment of work.

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid serialization in OpenMP code

#pragma omp parallel for

for (i=0; i<n; i++) {

 y[i] = x[i] + w[i]*z[i];

 #pragma omp critical

 ysum += y[i]

}

Look for ways to avoid synchronization events in loops. Consider
reduction variables or restructuring of logic

All other threads are idle waiting for the

active thread to exit the critical region

#pragma omp parallel for reduction(+:ysum)

for (i=0; i<n; i++) {

 y[i] = x[i] + w[i]*z[i];

 ysum += y[i]

}
Code will be generated to calculate

partial sums and collect results after

loop

SAN DIEGO SUPERCOMPUTER CENTER

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Avoid synchronization in MPI code

Do_some_work;

MPI_Barrier(MPI_COMM_WORLD);

Do_some_more_work;

MPI_Barrier(MPI_COMM_WORLD);

Do_some_more_work;

Think about whether or not synchronization is really needed

Will removing these change my

results?

