
OpenMP Current Status and
Future Directions

Yun (Helen) He, Michael Klemm, Bronis R. De Supinski

Architecture Review Board
• The mission of the OpenMP ARB

(Architecture Review Board) is to standardize
directive-based multi-language high-level
parallelism that is performant, productive
and portable.

• 32 members currently. More in the work to
join.

• Please consider joining us too so you can also
contribute!

2

OpenMP Programming Model

OpenMP is a modern directive-based programming model:
 Multi-level parallelism supported (coprocessors, threads, SIMD)
 Task-based programming model is the modern approach to parallelism
 Powerful language features for complex algorithms
 High-level access to parallelism; path forward to highly efficient programming

Using the hybrid MPI/OpenMP programming model is one of the main
choices
 for running scientific applications on many hardware architectures such as Intel Xeon,

Xeon Phi, and Nvidia GPUs.

3

OpenMP Roadmap
OpenMP has a well-defined roadmap:
 Last officially released versions: 4.0 (July 2013), 4.5 (Nov 2015)
 5-year cadence for major releases
 One minor release in between
 (At least) one Technical Report (TR) with feature previews in every year
 Current release version is 4.5

Nov’17 Nov’18 Nov’19 Nov’20 Nov’21 Nov’22 Nov’23

TR6 OpenMP 5.0

Public Comment
Draft (TR7)

OpenMP 5.x TR9* TR10* OpenMP 6.0

* Numbers assigned to TRs may change if additional TRs are released.

TR8*

4

Current Status
(OpenMP 4.5 and Earlier)

5

Versions 4.0 and 4.5
OpenMP has been significantly modernized since the OpenMP 4.0 (July 2013) and

OpenMP 4.5 (Nov 2015) specification releases.
Major additions include: SIMD, task dependencies, task groups, thread affinity, user

defined reductions, taskloop, doacross.
 Target device support was first introduced in OpenMP 4.0 and was the focus for

enhancement for OpenMP 4.5.

Thread Affinity

doacross

SIMD Target Device Support Task Groups

TaskloopUser Defined Reductions Task Priority

Hint for locks and critical Fortran 2003 Support

Task Dependencies

6

 Device constructs
 SIMD constructs
 Cancellation
 Task dependences and task groups
 Thread affinity control
 User-defined reductions
 Initial support for Fortran 2003
 Support for array sections (including in C and C++)
 Sequentially consistent atomics
 Display of initial OpenMP internal control variables

OpenMP 4.0 Major Additions

7

 Unstructured data mapping
 Asynchronous execution
 Scalar variables are firstprivate by default
 Improvements for C/C++ array sections
 Device runtime routines: allocation, copy, etc.
 Clauses to support device pointers
 Ability to map structure elements
 New combined constructs
 New way to map global variables (link)

OpenMP 4.5 Focused on Device Support

8

 Many clarifications and minor enhancements
SIMD extensions
Addition of schedule modifiers: simd, monotonic, nonmonotonic
Clarifications of thread affinity policies
Grammar for OMP_PLACES
Support for if clause on combined/composite constructs
Reductions for C/C++ arrays
Runtime routines to support affinity

 Support for doacross loops
 Divide loop into tasks with taskloop construct
 Hints for locks and critical sections
 Continues to increase Fortran 2003 support
 Task priorities
 Improved support for C++ reference types
 New terms to simplify discussion of new features

OpenMP 4.5 Other New Features

9

Vectorization Before OpenMP 4.0

Programmers had to rely on auto-vectorization…
… or to use vendor-specific extensions
 Programming models (e.g., Intel® Cilk™ Plus)
 Compiler pragmas (e.g., #pragma vector)
 Low-level constructs (e.g., _mm_add_pd())

10

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;
}

You need to trust your
compiler to do the

“right” thing.

SIMD Version of Scalar Product

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum)
for (int k=0; k<n; k++)

sum += a[k] * b[k];
return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

11

#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

#pragma omp declare simd
float distsq(float x, float y) {

return (x - y) * (x - y);
}

void example() {
#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1):
vminps %zmm1, %zmm0, %zmm0
ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):
vsubps %zmm0, %zmm1, %zmm2
vmulps %zmm2, %zmm2, %zmm0
ret

vmovups (%r14,%r12,4), %zmm0
vmovups (%r13,%r12,4), %zmm1
call _ZGVZN16vv_distsq
vmovups (%rbx,%r12,4), %zmm1
call _ZGVZN16vv_min

12

Thread Affinity Control

OpenMP 4.0 added OMP_PLACES environment variable to control thread
allocation
 Can be threads, cores, sockets, or a list with explicit CPU ids.

OMP_PROC_BIND controls thread affinity within and between OpenMP
places
 OpenMP 3.1 only allows TRUE or FALSE.
 OpenMP 4.0 still allows the above. Added options: close, spread, master.

13

Task Synchronization w/ Dependencies
int x = 0;
#pragma omp parallel
#pragma omp single
{

#pragma omp task depend(in: x)
std::cout << x << std::endl;

#pragma omp task
long_running_task();

#pragma omp task depend(inout: x)
x++;

}

OpenMP 4.0int x = 0;
#pragma omp parallel
#pragma omp single
{

#pragma omp task
std::cout << x << std::endl;

#pragma omp task
long_running_task();

#pragma omp task
x++;

}

OpenMP 3.1

#pragma omp taskwait

14

t1

t2

t3

t1

t2

t3

taskloop Example: saxpy Operation

 Manual transformation is cumbersome and
error prone

 Applying blocking techniques for large loops
can be tricky

 taskloop: improved programmability

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS) ? SIZE : i+TS;
#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;
}

}

for (i = 0; i<SIZE; i+=1) {
A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS) ? SIZE : i+TS;
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;
}

}

#pragma omp taskloop grainsize(TS)
for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;
}

taskloopblocking

15

Parallelizing doacross Loop

 Help with cross-
iteration
dependencies

Use “ordered”
clause to ensure
structured
blocks are
executed on
lexical order

16

Example courtesy of Tim Mattson

Device Model

OpenMP 4.0 supports accelerators/coprocessors
Device model:
 One host
 Multiple accelerators/coprocessors of the same kind

Host
Coprocessors

17

Example
#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0)

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

host
target

host
target

host

18

Multi-level Device Parallelism

19

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute
for (int i = 0; i < n; i += num_blocks){

#pragma omp parallel for
for (int j = i; j < i + num_blocks; j++) {

y[j] = a*x[j] + y[j];
} } } }

all do the same

workshare (w/o barrier)

workshare (w/ barrier)

Device Parallelism: Combined Constructs

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp teams distribute parallel for \
num_teams(num_blocks) num_threads(bsize)

for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

}

20

Future Directions
(OpenMP 5.0 and Beyond)

21

Version 5.0 is on its Way (Release @ SC18)

OpenMP 5.0 will introduce new powerful features to improve
programmability

loop Construct

C++14 and C++17 support

Fortran 2008 support

Detachable Tasks

Unified Shared Memory

Data Serialization for Offload

Meta-directivesParallel Scan

Improved Task Dependences

“Reverse Offloading”Display Affinity

Collapse non-rect. Loops
Multi-level Parallelism

Task Reductions Memory Allocators

Dependence Objects Tools APIs: OMPD,OMPT

Task-to-data Affinity

User Defined Function Variants
22

 Included 24 passed tickets
 Major new feature was performance tool support (TR2+)
 Some significant extensions to existing functionality
Support for task reductions, including on taskloop construct
Implicit declare target directives and other verbosity

reducing changes

 Many clarifications and minor enhancements, including:
Use of any C/C++ lvalue in depend clauses
Addition of depend clause to taskwait construct
Addition of conditional modifier to lastprivate clause
Permits declare target on C++ classes with virtual members
Clarification of declare target C++ initializations

TR4 was released in November 2016

23

 Includes 88 tickets beyond those in TR4 (112 tickets total)
 Many major additions and significant enhancements

Adds memory allocators to support complex memory hierarchies
User defined mappers provide deep copy support for map clauses
Supports better control of device usage and specialization for devices

Can require unified shared memory
Can use functions specialized for a type of device

Adds concurrent construct to support compiler optimization
Adds support to display runtime thread affinity
Support for third-party (debugging) tools
Adds C11, C++11 and C++14 as normative base languages
Expands task dependency mechanism for greater flexibility and control
Release/acquire semantics added to memory model
Supports collapse of imperfectly nested loops
Support for != on C/C++ loops

 Many clarifications and other minor enhancements

TR6 was released in November 2017

24

 Includes 131 tickets beyond those in TR6 (243 tickets total)
 Many major additions and significant enhancements

Support for metadirectives and function variants
Device refinements including reverse offload
Revises concurrent construct to be loop construct
Allows teams construct outside of target (i.e., on host)
Supports task affinity, task modifier on reductions on other constructs,

depend objects and detachable tasks
Adds C++17 and Fortran 2008 as normative base languages, completes

Fortran 2003
Supports request to quiesce OpenMP threads
Supports collapse of non-rectangular loops
Adds scan operations (similar to reductions)
Expands and refines memory allocator support
Extensions and refinements of deep copy support
Supports C/C++ array shaping

 Many clarifications and other minor enhancements

TR7 was released in July 2018

25

Task Reductions

Task reductions extend traditional
reductions to arbitrary task graphs

Extend the existing task and
taskgroup constructs

Also work with the taskloop
construct

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{

res += node->value;
}
node = node->next;

}
}

}
}

26

Existing Parallel Loop Constructs

Existing parallel loop constructs are tightly bound to execution model:

join

distribute work

barrier

fork

#pragma omp for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

27

The new loop Construct
The loop construct asserts to the compiler that the iterations of a loop are

free of dependencies and may be run concurrently in any order.
 Each iteration execute exactly once.

 It is meant to let the OpenMP implementation choose the right
parallelization scheme.
 Can be used on both host and device.

28

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp loop
for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

}

 Getting the optimal process and thread affinity is critical to ensuring optimal
performance and is an essential step before starting any code optimization
attempts.

 Automatic display of affinity when OMP_DISPLAY_AFFINITY environment
variable is set to TRUE.

 The format of the output can be customized by setting the
OMP_AFFINITY_FORMAT environment variable to an appropriate string or
use the runtime set/get routines

 Flexible runtime API calls omp_display_affinity() or omp_capture_affinity()
to display or capture thread affinity info at selected locations within code.

 Sample OMP_AFFINITY_FORMAT= "thrd_level= %L, parent_id= %A, thrd_id=
%T, thrd_affinity= %A"

 Sample output
thrd_level= 1, parent_thrd= 0,thrd_id= 0, thrd_affinity= 0,2,4,6
thrd_level= 1, parent_thrd= 0,thrd_id= 1, thrd_affinity= 1,3,5,7

Display Thread Affinity at Runtime

29

Memory Allocators

30

Example: Using Memory Allocators

31

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator
double *p = (double *) malloc(N*M*sizeof(*p));

#pragma omp parallel private(a)
{

some_parallel_code();
}

#pragma omp target firstprivate(c)
{

#pragma omp parallel private(a)
{

some_other_parallel_code();
}

}

omp_free(p);
}

allocate(my_allocator:a)

allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

allocate(omp_high_bw_mem_alloc:a)

omp_alloc(N*M*sizeof(*p), my_allocator);

Requires Unified Shared Memory
• Single address space over CPU and GPU memories
• Data migrated between CPU and GPU memories transparently to

the application - no need to explicitly copy data

32

// No data directive needed.
#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++)
{
#pragma omp target teams distribute parallel for

for (j=0; j<ARRAY_SIZE; j++) {
a[j] = b[j] + scalar * c[j];

}
}}

 OpenMP 4.0 added Fortran 2003 to list of base
language versions

 OpenMP 4.5 has a list of unsupported Fortran 2003
features
List initially included 24 items (some big, some small)
List has been reduced to 10 items
List in specification reflects approximate OpenMP 5.0 priority
Priorities determined by importance and difficulty

 OpenMP 5.0 will fully support Fortran 2003

Fortran 2003 Support in OpenMP

33

 OpenMP 5.0 will add Fortran 2008 (along with C11,
C++11, C++14, and C++17) as normative
references

 OpenMP 5.0 (see released TR7 specifications) has
a list of unsupported Fortran 2008 features

 OpenMP 5.1 will work through the list to add more
support. Some top priority features to consider are:
DO CONCURRENT
Coarrays
Submodules

Fortran 2008 Support in OpenMP

34

 Deeper support for descriptive and prescriptive control
 More support for memory affinity and complex hierarchies
 Support for pipelining, other computation/data associations
 Continued refinements and improvements to device support
 Unshackled threads
 Event-driven parallelism
 Completing support for new normative references
 Fortran: support assumed-type (type(*))

Some Potential Topics for OpenMP 5.1 or 6.0

35

Resources
Lots of information available at ARB’s website
 Specifications, technical reports, summary cards
 Compilers and Tools
 Tutorials, presentations, and publications

OpenMP Book
OpenMP Events
 Supercomputing Conference
 OpenMPCon Workshop
 IWOMP Workshop
 UK OpenMP Users’ Conference

http://www.openmp.org

36

SC18 Tutorials and BoF

 Enjoy a promo video about OpenMP history and SC18 tutorials !
 https://www.youtube.com/watch?v=sncF6s7xym4

 Tutorial: OpenMP Common Core: A “Hands-On” Exploration
 Tim Mattson, Alice Koniges. Yun (Helen) He, David Eder

 Tutorial: Mastering Tasking with OpenMP
 Michael Klemm, Sergi Mateo, Christian Terboven, Xavier Teruel, Bronis de Supinski

 Tutorial: Advanced OpenMP: Performance and 5.0 Features
 James Beyer, Michael Klemm, Kelvin Li, Christian Terboven, Bronis de Supinski, Ruud van der Pas

 Tutorial: Programming Your GPU with OpenMP: A Hands-On Introduction
 Simon McIntosh-Smith, Tim Mattson

OpenMP BoF

37

https://www.youtube.com/watch?v=sncF6s7xym4

About OpenMP History and SC18 Tutorials

38

	OpenMP Current Status and Future Directions
	Architecture Review Board
	OpenMP Programming Model
	OpenMP Roadmap
	Current Status �(OpenMP 4.5 and Earlier)
	Versions 4.0 and 4.5
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Vectorization Before OpenMP 4.0
	SIMD Version of Scalar Product
	SIMD Function Vectorization
	Thread Affinity Control
	Task Synchronization w/ Dependencies
	taskloop Example: saxpy Operation
	Parallelizing doacross Loop
	Device Model
	Example
	Multi-level Device Parallelism
	Device Parallelism: Combined Constructs
	Future Directions�(OpenMP 5.0 and Beyond)
	Version 5.0 is on its Way (Release @ SC18)
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Task Reductions
	Existing Parallel Loop Constructs
	The new loop Construct
	Slide Number 29
	Slide Number 30
	Example: Using Memory Allocators
	Requires Unified Shared Memory
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Resources
	SC18 Tutorials and BoF
	About OpenMP History and SC18 Tutorials

