A PGAS Implementation of the ECMWF Integrated Forecasting System (IFS) NWP Model

George.Mozdzynski@ecmwf.int
Acknowledgements

Mats Hamrud ECMWF
Nils Wedi ECMWF
Willem Deconinck ECMWF
Jens Doleschal Technische Universität Dresden
Harvey Richardson Cray UK

And my other partners in the CRESTA Project

The CRESTA project has received funding from the EU Seventh Framework Programme (ICT-2011.9.13)
What is CRESTA - see http://cresta-project.eu/

- Collaborative Research into Exascale Systemware, Tools and Applications
- EU funded project, 3 years (started Oct 2011), ~ 50 scientists
- Six co-design vehicles (aka applications)
 - ELMFIRE (CSC, ABO, UEDIN) - fusion plasma
 - GROMACS (KTH) - molecular dynamics
 - HEMELB (UCL) - biomedical
 - IFS (ECMWF) - weather
 - NEK5000 (KTH) & OPENFOAM (USTUTT, UEDIN) - comp. fluid dynamics
- Two tool suppliers
 - ALLINEA (ddt : debugger) & TUD (vampir : performance analysis)
- Technology and system supplier – CRAY UK
- Many Others (mostly universities)
 - ABO, CRSA, CSC, DLR, JYU, KTH, UCL, UEDIN-EPCC, USTUTT-HRLS
Sustained Exaflop in 2033?
IFS model: current and future model resolutions

<table>
<thead>
<tr>
<th>IFS model resolution</th>
<th>Envisaged Operational Implementation</th>
<th>Grid point spacing (km)</th>
<th>Time-step (seconds)</th>
<th>Estimated number of cores¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1279 H²</td>
<td>2013 (L137)</td>
<td>16</td>
<td>600</td>
<td>2K</td>
</tr>
<tr>
<td>T2047 H</td>
<td>2014-2015</td>
<td>10</td>
<td>450</td>
<td>6K</td>
</tr>
<tr>
<td>T3999 NH³</td>
<td>2023-2024</td>
<td>5</td>
<td>240</td>
<td>80K</td>
</tr>
<tr>
<td>T7999 NH</td>
<td>2031-2032</td>
<td>2.5</td>
<td>30-120</td>
<td>1-4M</td>
</tr>
</tbody>
</table>

¹ – a gross estimate for the number of ‘IBM Power7’ equivalent cores needed to achieve a 10 day model forecast in under 1 hour (~240 FD/D), system size would normally be ~10 times this number.

² – Hydrostatic Dynamics

³ – Non-Hydrostatic Dynamics
IFS PGAS Optimizations for ExaScale & Co-design

- IFS PGAS optimizations in the CRESTA project
 - Involve use of Fortran2008 coarrays (CAF)
 - Used within context of OpenMP parallel regions
- Overlap Legendre transforms with associated transpositions
- Overlap Fourier transforms with associated transpositions
- Rework semi-Lagrangian communications
 - To substantially reduce communicated halo data
 - To overlap halo communications with SL interpolations
- CAF co-design team
 - caf-co-design@cresta-project.eu
 - ECMWF – optimize IFS as described above
 - CRAY – optimize DMAPP to be thread safe
 - TUD – visualize CAF operations in IFS with vampir
 - ALLINEA – debug IFS at scale with ddt (MPI/OMP/CAF)

george.mozdzynski@ecmwf.int
mats.hamrud@ecmwf.int
willem.deconinck@ecmwf.int
harveyr@cray.com
michs@kth.se
tobias.hilbrich@tu-dresden.de
kostas@ihs.uni-stuttgart.de
m.bull@epcc.ed.ac.uk
jens.doleschal@tu-dresden.de
xaguilar@pdc.kth.se
david@allinea.com
jeremy@epcc.ed.ac.uk
IFS PGAS optimizations for [Tera,Peta,Exa]scale

Grid-point space
- semi-Lagrangian advection
- physics
- radiation
- GP dynamics

Spectral space
- horizontal gradients
- semi-implicit calculations
- horizontal diffusion

Diagram:
- FTDIR → Fourier space → LTDIR
- FTINV → Fourier space → LTINV
- trgtol → trltom → trltog → trmtol
Overlap Legendre transforms with associated transpositions

LTINV

TRMTOL (MPI_alltoallv)

LTINV + coarray puts

threads

time

OLD

NEW
Overlap Legendre transforms with associated transpositions/3 (LTINV + coarray puts)

Expectation is that compute (LTINV-blue) and communication (coarray puts-yellow) overlap in time. We can now see this with an extension to vampir developed in CRESTA
Semi-Lagrangian Transport

• Computation of a trajectory from each grid-point backwards in time, and
• Interpolation of various quantities at the departure and at the mid-point of the trajectory
Semi-Lagrangian Transport: T799 model, 256 tasks

Task 11 encountered the highest wind speed of 120 m/s (268 mph) during a 10 day forecast starting 15 Oct 2004
blue: halo area

Halo width assumes a maximum wind speed of $400 \text{ m/s} \times 720 \text{ s}$ T799 time-step (288 km)

Get u, v, w wind vector variables (3) from ‘neighbour’ tasks to determine departure and mid-point of trajectory
red: halo points actually used

Get rest of the variables (26) from the red halo area and perform interpolations

Note that volume of halo data communicated is dependent on wind speed and direction in locality of each task
wind plot

Fri 15 Oct 2004 12UTC ECMWF Forecat t+0 VT: Fri 15 Oct 2004 12UTC Model Level 1 U velocity/V velocity 25.0m/s
Semi-Lagrangian – coarray implementation

red: only the halo points that are used are communicated

Note no more blue area (max wind halo) and associated overhead.

Also, halo coarray transfers take place in same OpenMP loop as the interpolations.
ORNL’s “Titan” System

- #1 in Nov 2012 Top500 list
- CRESTA awarded access (INCITE13 programme)
- 18X peak perf. of ECMWF’s P7 clusters (C2A+C2B=1.5 Petaflops)
- Upgrade of Jaguar from Cray XT5 to XK6
- Cray Linux Environment operating system
- Gemini interconnect
 - 3-D Torus
 - Globally addressable memory
- AMD Interlagos cores (16 cores per node)
- New accelerated node design using NVIDIA K20 “Kepler” multi-core accelerators
- 600 TB DDR3 mem. + 88 TB GDDR5 mem

Titan Specs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Nodes</td>
<td>18,688</td>
</tr>
<tr>
<td>Login & I/O Nodes</td>
<td>512</td>
</tr>
<tr>
<td>Memory per node</td>
<td>32 GB + 6 GB</td>
</tr>
<tr>
<td># of NVIDIA K20 “Kepler” processors</td>
<td>14,592</td>
</tr>
<tr>
<td>Total System Memory</td>
<td>688 TB</td>
</tr>
<tr>
<td>Total System Peak Performance</td>
<td>27 Petaflops</td>
</tr>
</tbody>
</table>

Source (edited): James J. Hack, Director, Oak Ridge National Laboratory
T2047L137 model performance on HECToR (CRAY XE6) RAPS12 IFS (CY37R3), cce=8.0.6 -hflex_mp=intolerant
T2047L137 IFS model performance improvement by using Fortran2008 coarrays on HECToR (CRAY XE6)
T2047L137 IFS forecast model performance
RAPS12 (CY37R3, on HECToR), RAPS13 (CY38R2, on TITAN)
IFS T3999L137 hydrostatic forecast model performance on TITAN
RAPS13 IFS (CY38R2), \(cce=8.1.5, NRADRES=2047, NRADFR=1 \)

NO use of GPGPU on each node;
Floating Point performance of each GPGPU is about 10X that of 16 AMD Interlagos cores
LTINV recoding

COMPUTE
COMMUNICATION

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM,IM)
DO JM=1,D%NUMP
IM = D%MYMS(JM)
CALL LTINV(IM,JM,KF_OUT_LT,KF_UV,KF_SCALARS,KF_SCDERS,ILEI2,IDIM1,&
&PSPVOR,PSPDIV,PSPSCALAR ,&
&PSPSC3A,PSPSC3B,PSPSC2 , &
& KFLDPTRUV,KFLDPTRSC,FSPGL_PROC)
ENDDO
!$OMP END PARALLEL DO

DO J=1,NPRTRW
ILENS(J) = D%NLTSFTB(J)*IFIELD
IOFFS(J) = D%NSTAGT0B(J)*IFIELD
ILENR(J) = D%NLTSGB(J)*IFIELD
IOFFR(J) = D%NSTAGT0B(D%MSTABF(J))*IFIELD
ENDDO
CALL MPL_ALLTOALLV(PSENDBUF=FOUBUF_IN,KSENDCOUNTS=ILENS,&
&PRECVBUF=FOUBUF,KRECVCOUNTS=ILENR,&
&KSENDDISPL=IOFFS,KRECVDISPL=IOFFR,&
&KCOMM=MPL_ALL_MS_COMM,CDSTRING='TRMTOL:')

COMPUTE
COMMUNICATION

!$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM,IM,JW,IPE,ILEN,ILENS,IOFFS,IOFFR)
DO JM=1,D%NUMP
IM = D%MYMS(JM)
CALL LTINV(IM,JM,KF_OUT_LT,KF_UV,KF_SCALARS,KF_SCDERS,ILEI2,IDIM1,&
&PSPVOR,PSPDIV,PSPSCALAR ,&
&PSPSC3A,PSPSC3B,PSPSC2 , &
& KFLDPTRUV,KFLDPTRSC,FSPGL_PROC)
ENDDO
!$OMP END PARALLEL DO
DO JW=1,NPRTRW
ILENS(JW) = D%NLTSFTB(J)*IFIELD
IOFFS(JW) = D%NSTAGT0B(J)*IFIELD
ILENR(J) = D%NLTSGB(J)*IFIELD
IOFFR(J) = D%NSTAGT0B(D%MSTABF(J))*IFIELD
ENDDO
CALL MPL_ALLTOALLV(PSENDBUF=FOUBUF_IN,KSENDCOUNTS=ILENS,&
&PRECVBUF=FOUBUF,KRECVCOUNTS=ILENR,&
&KSENDDISPL=IOFFS,KRECVDISPL=IOFFR,&
&KCOMM=MPL_ALL_MS_COMM,CDSTRING='TRMTOL:')
Schedule for future IFS optimizations in CRESTA

<table>
<thead>
<tr>
<th>When</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H2013</td>
<td>Scaling runs of T3999 model on TITAN (CRESTA INCITE award)</td>
</tr>
<tr>
<td></td>
<td>Initial use of GPUs for IFS (targeting costly LTINV/LTDIR dgemm’s)</td>
</tr>
<tr>
<td></td>
<td>Some OpenACC experiments with IFS</td>
</tr>
<tr>
<td>2014</td>
<td>Further IFS scalability optimizations</td>
</tr>
<tr>
<td></td>
<td>• Radiation [wave model, surf scheme] computations in parallel with model</td>
</tr>
<tr>
<td></td>
<td>• transpose SL data</td>
</tr>
<tr>
<td></td>
<td>• Use of coarray teams in next Fortran 201X standard</td>
</tr>
<tr>
<td></td>
<td>• Coarray transfers are still in OMP Critical Sections (do we still need CSs)</td>
</tr>
<tr>
<td></td>
<td>Explore use of DAG parallelization (with OMPSs)</td>
</tr>
<tr>
<td></td>
<td>• With a toy code representative of IFS</td>
</tr>
<tr>
<td></td>
<td>Development & testing of alternative local data structures (minimizing communications) for IFS</td>
</tr>
</tbody>
</table>
SC12 paper

Thank you for your attention

QUESTIONS?
Some of the “issues” at the Exascale

• Power
 • An Exascale computer today would require about a gigawatt ($1B per year)
 • 20 megawatt seen as a limit for governments with deep pockets
 • We expect engineers will solve this problem

• Processors are not getting faster
 • They are getting slower
 • But this is more than compensated by their number (e.g. GPGPUs)

• Reliability
 • Uptime for single system ~ 1 day
 • Implies redundancy of nodes, network, filesystem, no single point of failure

• Scalability of applications
 • Incremental / disruptive solutions / new algorithms / I/O
 • Ensemble methods?
An example of why running a single model at the Exascale will be “challenging”

• Assume the following,
 • model time step of 30 seconds
 • 10 day forecast
 • model on 4M cores
 • max 1 hour wall clock
• 1 step needs to run in under 0.125 seconds
• Using 32 OpenMP threads per task, we will have 128K MPI tasks
• Say we do a simple MPI_SEND from 1 task (e.g. master) to all other 128K tasks
• This will take an estimated 128K x 1 microsec = 0.128 seconds
• Of course we need to use more efficient MPI collectives
• Implies global communications cannot be used, or
• Each task needs to run with 100’s or 1000’s of threads or GPU cores => max O(10K) MPI tasks, and
• Use of 2D or 3D parallelization
IFS grid point space: “EQ_REGIONS” partitioning for 1024 MPI tasks

Each MPI task has an equal number of grid points
Single node performance for md.F90 **
(normalised by wall clock time for 16 AMD Interlagos cores)

** md.F90 is a small (237 lines) molecular dynamics kernel
Thank you to Alistair Hart (CRAY) for helping me with the OpenACC version
Happy to share OpenMP and OpenACC code, send me an email
Summary

• Many challenges exist for IFS applications to run at the Exascale

• First of these is for hardware vendors to build Exascale computers that are both affordable (cost + power) and reliable

• Ease of programming GPGPU technology will be much easier in the future when there is a single address space for GPGPU cores and conventional cores (if available)
 • Will we need OpenACC in this future?
 • The term GPGPU will disappear in the future

• Our IFS applications will require substantial development in the years to come
IFS T3999L137 hydrostatic forecast model efficiency on TITAN
RAPS12 IFS (CY38R2), cce=8.1.5, NRADRES=2047, NRADFR=1
Radiation computations in parallel with model

Today

Radiation in parallel (1)

Radiation in parallel (2)

Time

Cores

(1) Radiation lagged by 1 step, reduced radiation grid (1x more cores)
(2) Radiation lagged by 1 step, radiation grid = model grid (2.5x more cores)
DAG example: Cholesky Inversion

DAG = Directed Acyclic Graph

Can IFS use this technology?

Source: Stan Tomov, ICL, University of Tennessee, Knoxville
How far can we go with ... technology applied at ECMWF for the last 30 years ...

A spectral transform, semi-Lagrangian, semi-implicit (compressible) (non-)hydrostatic model?

- Computational efficiency on and affordability of future HPC architectures?
- Accuracy and predictability at cloud-resolving scales?

“The reports of my death have been greatly exaggerated”

Mark Twain

The spectral transform method, dead or alive?
IFS model coarray developments

Compile with \texttt{–DCOARRAYS}

for compilers that support Fortran2008 coarray syntax

Run with,

\begin{verbatim}
&NAMPAR1 LCOARRAYS=true, to use coarray optimizations
&NAMPAR1 LCOARRAYS=false, to use original MPI implementation
\end{verbatim}
Butterfly algorithm: apply

\[
f = S \alpha
\]

\[
\text{for } l = 0 \rightarrow L \text{ do}
\]
\[
\text{for all } j, k \text{ boxes do}
\]
\[
\text{if } l = 0 \text{ then}
\]
\[
\text{store } \beta_{0,k} = A_{0,k}\alpha_k
\]
\[
\text{else}
\]
\[
\text{store } \beta_{l,j,k}
\]
\[
= A_{l,j,k} \times \text{comb_l_and_r_neigh}(\beta, l - 1)
\]
\[
\text{end if}
\]
\[
\text{if } l = L \text{ then}
\]
\[
\text{store } f_{L,j} = C_{L,j}\beta_{L,j}
\]
\[
\text{end if}
\]
\[
\text{end for}
\]
\[
\text{end for}
\]
% (of total execution time) cost of spectral part of the model on IBM Power7 (all L91, all NH for comparison); Total includes communications

We expect significant reductions in future cores -> vector instr. / GPU

All these can be run with hydrostatic code == ½ of above numbers!
% cost of Spectral Transforms on IBM Power7 (all L91, all NH for comparison)

Expect significant reductions in future cores -> vector instr. / GPU
Average wall-clock time compute cost [milli-seconds] per spectral transform

- **dgemm**
- **FLT**

<table>
<thead>
<tr>
<th>Size</th>
<th>dgemm</th>
<th>FLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>799</td>
<td>3.3</td>
<td>4.1</td>
</tr>
<tr>
<td>1279</td>
<td>10.3</td>
<td>11.4</td>
</tr>
<tr>
<td>2047</td>
<td>39.8</td>
<td>39.5</td>
</tr>
<tr>
<td>3999</td>
<td>222.7</td>
<td>187.2</td>
</tr>
<tr>
<td>7999</td>
<td>1543.1</td>
<td>1091.7</td>
</tr>
</tbody>
</table>
IFS PGAS Optimisations for Exascale

- IFS PGAS optimisations in the CRESTA project
 - Involve use of Fortran2008 coarrays (CAF)
 - Used within context of OpenMP parallel regions
- Overlap Legendre transforms with associated transpositions
- Overlap Fourier transforms with associated transpositions
- Rework semi-Lagrangian communications
 - To substantially reduce communicated halo data
 - To overlap halo communications with SL interpolations
- Explore GPU and Vector technology for further computational speed-ups of matrix-matrix multiplies
Numerical solution

• Two-time-level, semi-implicit, semi-Lagrangian.
• Semi-implicit procedure with two reference states, with respect to gravity and acoustic waves, respectively.
• The resulting Helmholtz equation can be solved (subject to some constraints on the vertical discretization) with a direct spectral method, that is, a mathematical separation of the horizontal and vertical part of the linear problem in spectral space, with the remainder representing at most a pentadiagonal problem of dimension $NLEV^2$. Non-linear residuals are treated explicitly (or iteratively implicitly)!

NH IFS Tₜ 3999 L91 (5 km) on IBM Power7 with FLT

TSTEP=180s, 3.1s/iteration
Using 1024 tasks x16 OpenMP threads
10 day forecast ~ 4 hours for this config

SP_DYN was 23 percent for this model configuration, and is now 7 percent.
Improvement due to exposing ‘greater OpenMP parallelism’ from 4K threads to a maximum of 4K * 91 threads; in this case 16K threads.
T3999 6h forecast - inverse transforms: CPU time vs. wave
T3999 6h forecast - inverse transforms: Floating point operations vs. wave number
Exascale problem projections

• To run a T7999 L137 forecast (~2.5km) may require approximately 1-4 million processors (of current technology) to run in one hour

• At the same time 1-4 Million processors could run a 50 member ensemble of T3999 L137 in the same hour

• But first we have to be able to run a T3999 L137 forecast efficiently in one hour!