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Introduction to Python* Performance

General Python behavior (Cpython)

 Cpython provides an interpreter to run commands from Python Bytecode (.pyc)

 Compiling doesn’t go down to x86 instructions, but instead 

 Python interpreter  Compiled Bytecode  Python Virtual Machine

 Allows for very flexible bytecode, and the Python interpreter is the main ingredient

 Cpython and PyPy have a Global Interpreter Lock (GIL)

thread w1

thread w2

thread w3

rel/acq
GIL

rel/acq
GIL

rel/acq
GIL

Cpython Global Interpreter Lock

run

run

run
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Loop 
(row 1)

Loop 
(row 2)

Loop (... 
row n)

Loop 
(row 1)

Compute append

Loop 
(row 2)

Compute append

Loop 
(… row n)

Compute append

For loop 
call

For loop 
call

Python-level only (Single-threaded)

Python and NumPy dispatch

6

Why does this matter? (Python layers)

 Example with array loops

 GIL will force loops to run in a single threaded fashion

 NumPy* dispatch helps get around single-threaded by 
using C functions

 C functions can then call processor vectorization

Introduction to Python* Performance, cont.

Getting out of Python layer is key for performance
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Introduction to Python* Performance, cont.

Python

NumPy

Intel® Math 
Kernel Library 
(Intel® MKL)

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction 
overhead. No advanced types.

Gets around the GIL 
(multi-thread and multi-core)
BLAS API can be the bottleneck

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware 
vectorization

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

Intel® MKL included with Anaconda* standard bundle; is Free for Python

The layers of quantitative Python

 The Python language is interpreted and has 
many type checks to make it flexible

 Each level has various tradeoffs; NumPy* value 
proposition is immediately seen

 For best performance, escaping the Python 
layer early is best method
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Python + Numba*

C

LLVM-based compiler
Multiple threading runtimes

Optimizing compiler
OpenMP*/TBB/pthreads

Small %% performance gap

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

http://numba.pydata.org/



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ecosystem compatibilityGreater ProductivityFaster Performance

Prebuilt & Accelerated Packages Supports Python 2.7 & 3.6, conda, pip

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism, 
Multithreading, Language Extensions 

Accelerated NumPy/SciPy/scikit-learn with 
Intel® MKL1 & Intel® DAAL2

Data analytics, machine learning with scikit-
learn, pyDAAL

Optimized run-times Intel MPI®, Intel® TBB

Scale with Numba* & Cython*

Includes optimized mpi4py, works with 
Dask* & PySpark*

Optimized for latest Intel® architecture

Prebuilt & optimized packages for 
numerical computing, machine/deep 
learning, HPC & data analytics

Drop in replacement for existing Python -
Usually with no code changes required

Jupyter* notebooks, Matplotlib included

Conda build recipes included in packages

Free download & free for all uses including 
commercial deployment

Compatible & powered by Anaconda*, 
supports conda & pip

Distribution & individual optimized 
packages also available at conda & 
Anaconda.org, YUM/APT, Docker image 
on DockerHub

Optimizations upstreamed to main Python 
trunk

Commercial support through Intel® Parallel 
Studio XE 2018

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library

Accelerate libraries with Intel® Distribution for Python*
High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

Drop-in replacement for existing 
Python

Usually No code changes required!

Intel MKL accelerated Numpy, and 
scipy now in Anaconda!

9

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
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Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

Learn More: software.intel.com/distribution-for-python

mpi4pysmp

tbb4pydaal4py

Data acquisition & 
preprocessing

Numerical/Scientific computing & 
machine learning

Composable
multi-threading

Distributed 
parallelism

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/
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Intel® Distribution Python* Distribution Channels

Intel 
Software 

Tools suite

https://software.intel.com/en-us/distribution-for-python Standalone 
Installer

Open-source 
Channels

Intel® 
AD SDK

Linux*Windows*

macOS*

Available on Google Cloud Platform: Deep Learning Images

https://blog.kovalevskyi.com/deeplearning-images-revision-m9-intel-optimized-
images-273164612e93
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Installing Intel® Distribution for Python* 2019

Standalone 
Installer

Anaconda.org
Anaconda.org/intel channel

YUM/APT

Docker Hub

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel

> conda install intelpython3_full

> conda install intelpython3_core

docker pull intelpython/intelpython3_full

Access for yum/apt: 
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python

PyPI
pip install intel-numpy intel-scipy intel-sckit-learn

https://software.intel.com/en-us/articles/installing-the-intel-distribution-for-python-and-
intel-performance-libraries-with-pip-and

https://software.intel.com/en-us/articles/installing-the-intel-distribution-for-python-and-intel-performance-libraries-with-pip-and
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Xeon
Close to native code Umath Performance with Intel Python 2019   
Compared to Stock Python packages on Intel® Xeon processors
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Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for 
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific 
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you 
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel 
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that 
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of 
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this 
notice. Notice revision #20110804.

87%
native efficiency on

Black-Scholes Formula code
with Intel numpy + numba.
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Python usage

Intel® MKL included in Intel® Distribution of Python*

Numpy accelerated out of the box

No code changes

What MKL brings to Python

Single-Core: vectorization, prefetching, cache utilization

 SIMD support for AVX-512 ISA

Multi-Many Core (processor/socket) level parallelization

 OpenMP and TBB support

Multi-Socket (node) level parallelization & Clusters scaling

Intel® MKL: Python* Integration

Requires No Python Code Changes

14



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-
Scalable-processors-on-GCP.html
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Performance Against Native* Code
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Performance Against Native* Code, cont.



Intel® data analytics acceleration library 
(intel® daal)

Included in Intel® Parallel Studio and Intel® Distribution for Python*

Also available as Standalone Version (includes priority support)
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Faster Machine Learning & Analytics with Intel® DAAL

• Features highly tuned functions for classical machine learning and 
analytics performance across spectrum of Intel® architecture devices

• Optimizes data ingestion together with algorithmic computation for 
highest analytics throughput

• Includes Python*, C++, and Java* APIs and connectors to popular data 
sources including Spark* and Hadoop*

• New High-level Python API, daal4py introduced

• Out-of-box acceleration for key scikit-learn* algorithms

• Free and open source community-supported versions are available, as 
well as paid versions that include premium support.

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering, 

Normalization

Aggregation,
Dimension Reduction

Summary 
Statistics

Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis testing
Model errors 

What’s New in 2018 and 2019

 New Algorithms: 

 Logistic regression

 Classification & Regression GBT 

 Classification & Regression Decision Forest

 Spark* MLlib-compatible API wrappers for easy 
substitution of faster Intel DAAL functions

 Improved APIs for ease of use

 Repository distribution via PIP, Conda YUM and APT
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Distributed 
Processing

Online 
Processing

D1

D2

D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)
Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch 
Processing

D1
Dk-

1

Dk
…

Append

R = F(D1,…,Dk)

Processing Modes
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KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Intel® DAAL

daal4py

Scikit-Learn 
Equivalents

Scikit-Learn 
API

Compatible

PCA
KMeans

LinearRegression
Ridge

SVC
pairwise_distances

logistic_regression_path

Use directly for
• Scaling to multiple nodes
• Streaming data
• Non-homogeneous 

dataframes
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Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite
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Get a fly with daal4py
• Close to native performance through Intel® DAAL

• Efficient MPI scale-out

• Streaming
Fast & Scalable

• Intuitive usage model

• PicklableEasy to use

• Plugs into scikit-learn

• Plugs into HPAT/NumbaFlexible

• Open source: 
https://github.com/IntelPython/daal4pyOpen

https://github.com/IntelPython/daal4py
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Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out!  conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library 
(DAAL) 

Intel® Math Kernel 
Library (MKL)

Intel® Threading 
Building Blocks (TBB)
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Intel® Distribution for Python* Scikit-learn Optimizations, cont.
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Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @ 
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating 
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and 
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear 
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB 
of data in less than 48 milliseconds.
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import daal4py as d4p

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

# Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
# compute initial centers
ires = init.compute(data)
# results can have multiple attributes, we need centroids
centroids = ires.centroids
# compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py 
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import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

# compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py
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Distributed K-Means Using DAAL (C++ API)
*******************************************************************************/

/*

!  Content:

!    C++ sample of K-Means clustering in the distributed processing mode

!******************************************************************************/

#include <mpi.h>

#include "daal.h"

#include "service.h"

#include "stdio.h"

#include <iostream>

using namespace std;

using namespace daal;

using namespace daal::algorithms;

using namespace daal::services;

typedef std::vector<byte> ByteBuffer;

typedef float algorithmFPType; /* Algorithm floating-point type */

/* K-Means algorithm parameters */

const size_t nClusters = 20;

const size_t nIterations = 5;

const size_t nBlocks = 4;

/* Input data set parameters */

const string dataFileNames[4] =

{

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv",

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv"

};

#define mpi_root 0

const int step3ResultSizeTag = 1;

const int step3ResultTag = 2;

NumericTablePtr loadData(int rankId)

{

/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */

FileDataSource<CSVFeatureManager> dataSource(dataFileNames[rankId], DataSource::doAllocateNumericTable,

DataSource::doDictionaryFromContext);

/* Retrieve the data from the input file */

dataSource.loadDataBlock();

return dataSource.getNumericTable();

}

template <kmeans::init::Method method>

NumericTablePtr initCentroids(int rankId, const NumericTablePtr& pData);

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids);

template <kmeans::init::Method method>

void runKMeans(int rankId, const NumericTablePtr& pData, const char* methodName)

{

if(rankId == mpi_root)

std::cout << "K-means init parameters: method = " << methodName << std::endl;

NumericTablePtr centroids = initCentroids<method>(rankId, pData);

for(size_t it = 0; it < nIterations; it++)

centroids = computeCentroids(rankId, pData, centroids);

/* Print the clusterization results */

if(rankId == mpi_root)

printNumericTable(centroids, "First 10 dimensions of centroids:", 20, 10);

}

int main(int argc, char *argv[])

{

int rankId, comm_size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

MPI_Comm_rank(MPI_COMM_WORLD, &rankId);

NumericTablePtr pData = loadData(rankId);

runKMeans<kmeans::init::plusPlusDense>(rankId, pData, "plusPlusDense");

runKMeans<kmeans::init::parallelPlusDense>(rankId, pData, "parallelPlusDense");

MPI_Finalize();

return 0;

}

static int lengthsToShifts(const int lengths[nBlocks], int shifts[nBlocks])

{

int shift = 0;

for(size_t i = 0; i < nBlocks; shift += lengths[i], ++i)

shifts[i] = shift;

return shift;

}

/* Send the value to all processes in the group and collect received values into one table */

static NumericTablePtr allToAll(const NumericTablePtr& value)

{

std::vector<NumericTablePtr> aRes;

ByteBuffer dataToSend;

if(value.get())

serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();

int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Allgather(&dataToSendLength, sizeof(int), MPI_CHAR, perNodeArchLength, sizeof(int), MPI_CHAR, MPI_COMM_WORLD);

int perNodeArchShift[nBlocks];

const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);

if(!totalToReceive)

return NumericTablePtr();

ByteBuffer dataToReceive(totalToReceive);

MPI_Allgatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, &dataToReceive[0], perNodeArchLength, perNodeArchShift, MPI_CHAR, MPI_COMM_WORLD);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)

{

if(!perNodeArchLength[i])

continue;

NumericTablePtr pTbl = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

aRes.push_back(pTbl);

}

if(!aRes.size())

return NumericTablePtr();

if(aRes.size() == 1)

return aRes[0];

/* For parallelPlus algorithm */

RowMergedNumericTablePtr pMerged(new RowMergedNumericTable());

for(size_t i = 0; i < aRes.size(); ++i)

pMerged->addNumericTable(aRes[i]);

return NumericTable::cast(pMerged);

}

/* Send the value to all processes in the group and collect received values into one table */

static void allToMaster(int rankId, const NumericTablePtr& value, std::vector<NumericTablePtr>& aRes)

{

const bool isRoot = (rankId == mpi_root);

aRes.clear();

ByteBuffer dataToSend;

if(value.get())

serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();

int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Gather(&dataToSendLength, sizeof(int), MPI_CHAR, isRoot ? perNodeArchLength : NULL, sizeof(int),

MPI_CHAR, mpi_root, MPI_COMM_WORLD);

ByteBuffer dataToReceive;

int perNodeArchShift[nBlocks];

if(isRoot)

{

const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);

if(!totalToReceive)

return;

dataToReceive.resize(totalToReceive);

}

MPI_Gatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, isRoot ? &dataToReceive[0] : NULL,

perNodeArchLength, perNodeArchShift, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

return;

aRes.resize(nBlocks);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)

{

if(perNodeArchLength[i])

aRes[i] = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

}

}

template <kmeans::init::Method method>

NumericTablePtr initStep1(int rankId, const NumericTablePtr& pData)

{

const size_t nVectorsInBlock = pData->getNumberOfRows();

/* Create an algorithm object for the K-Means algorithm */

kmeans::init::Distributed<step1Local, algorithmFPType, method> local(nClusters, nBlocks*nVectorsInBlock, rankId*nVectorsInBlock);

local.input.set(kmeans::init::data, pData);

local.compute();

return allToAll(local.getPartialResult()->get(kmeans::init::partialCentroids));

}

template <kmeans::init::Method method>

void initStep2(int rankId, const NumericTablePtr& pData, DataCollectionPtr& localNodeData,

const NumericTablePtr& step2Input, bool bFirstIteration, std::vector<NumericTablePtr>& step2Results,

bool bOutputForStep5Required = false)

{

kmeans::init::Distributed<step2Local, algorithmFPType, method> step2(nClusters, bFirstIteration);

step2.parameter.outputForStep5Required = bOutputForStep5Required;

step2.input.set(kmeans::init::data, pData);

step2.input.set(kmeans::init::internalInput, localNodeData);

step2.input.set(kmeans::init::inputOfStep2, step2Input);

step2.compute();

if(bFirstIteration)

localNodeData = step2.getPartialResult()->get(kmeans::init::internalResult);

allToMaster(rankId, step2.getPartialResult()->get(

bOutputForStep5Required ? kmeans::init::outputOfStep2ForStep5 : kmeans::init::outputOfStep2ForStep3), step2Results);

}

template <kmeans::init::Method method>

NumericTablePtr initStep3(kmeans::init::Distributed<step3Master, algorithmFPType, method>& step3, std::vector<NumericTablePtr>& step2Results)

{

for(size_t i = 0; i < step2Results.size(); ++i)

step3.input.add(kmeans::init::inputOfStep3FromStep2, i, step2Results[i]);

step3.compute();

ByteBuffer buff;

NumericTablePtr step4InputOnRoot;

for(size_t i = 0; i < nBlocks; ++i)

{

NumericTablePtr pTbl = step3.getPartialResult()->get(kmeans::init::outputOfStep3ForStep4, i); /* can be null */

if(i == mpi_root)

{

step4InputOnRoot = pTbl;

continue;

}

buff.clear();

size_t size = pTbl.get() ? serializeDAALObject(pTbl.get(), buff) : 0;

MPI_Send(&size, sizeof(size_t), MPI_BYTE, int(i), step3ResultSizeTag, MPI_COMM_WORLD);

if(size)

MPI_Send(&buff[0], size, MPI_BYTE, int(i), step3ResultTag, MPI_COMM_WORLD);

}

return step4InputOnRoot;

}

NumericTablePtr receiveStep3Output(int rankId)

{

size_t size = 0;

MPI_Status status;

MPI_Recv(&size, sizeof(size_t), MPI_BYTE, mpi_root, step3ResultSizeTag, MPI_COMM_WORLD, &status);

if(size)

{

ByteBuffer buff(size);

MPI_Recv(&buff[0], size, MPI_BYTE, mpi_root, step3ResultTag, MPI_COMM_WORLD, &status);

return NumericTable::cast(deserializeDAALObject(&buff[0], size));

}

return NumericTablePtr();

}

template <kmeans::init::Method method>

NumericTablePtr initStep4(int rankId, const NumericTablePtr& pData, const DataCollectionPtr& localNodeData,

const NumericTablePtr& step4Input)

{

NumericTablePtr step4Result;

if(step4Input)

{

/* Create an algorithm object for the step 4 */

kmeans::init::Distributed<step4Local, algorithmFPType, method> step4(nClusters);

/* Set the input data to the algorithm */

step4.input.set(kmeans::init::data, pData);

step4.input.set(kmeans::init::internalInput, localNodeData);

step4.input.set(kmeans::init::inputOfStep4FromStep3, step4Input);

/* Compute and get the result */

step4.compute();

step4Result = step4.getPartialResult()->get(kmeans::init::outputOfStep4);

}

return allToAll(step4Result);

}

template<>

NumericTablePtr initCentroids<kmeans::init::plusPlusDense>(int rankId, const NumericTablePtr& pData)

{

const bool isRoot = (rankId == mpi_root);

const kmeans::init::Method method = kmeans::init::plusPlusDense;

/* Internal data to be stored on the local nodes */

DataCollectionPtr localNodeData;

/* Numeric table to collect the results */

RowMergedNumericTablePtr pCentroids(new RowMergedNumericTable());

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);

pCentroids->addNumericTable(step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;

SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iCenter = 1; iCenter < nClusters; ++iCenter)

{

std::vector<NumericTablePtr> step2ResultsOnMaster;

initStep2<method>(rankId, pData, localNodeData, step2Input, iCenter == 1, step2ResultsOnMaster);

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);

pCentroids->addNumericTable(step2Input);

}

return daal::data_management::convertToHomogen<float>(*pCentroids); /* can be returned as pCentroids as well */

}

template<>

NumericTablePtr initCentroids<kmeans::init::parallelPlusDense>(int rankId, const NumericTablePtr& pData)

{

const bool isRoot = (rankId == mpi_root);

const kmeans::init::Method method = kmeans::init::parallelPlusDense;

/* default value of nRounds used by all steps */

const size_t nRounds = kmeans::init::Parameter(nClusters).nRounds;

/* Create an algorithm object for the step 5 */

typedef kmeans::init::Distributed<step5Master, algorithmFPType, method> Step5Master;

SharedPtr<Step5Master> step5(isRoot ? new Step5Master(nClusters) : NULL);

/* Internal data to be stored on the local nodes */

DataCollectionPtr localNodeData;

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);

if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;

SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iRound = 0; iRound < nRounds; ++iRound)

{

/* Perform step 2 */

std::vector<NumericTablePtr> step2ResultsOnMaster;

initStep2<method>(rankId, pData, localNodeData, step2Input, iRound == 0, step2ResultsOnMaster);

/* Perform step 3 */

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));

/* Perform step 4 */

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);

if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

}

/* One more step 2 */

std::vector<NumericTablePtr> step2Results;

initStep2<method>(rankId, pData, localNodeData, step2Input, false, step2Results, true);

if(step5) /* isRoot == true */

{

for(size_t i = 0; i < step2Results.size(); ++i)

step5->input.add(kmeans::init::inputOfStep5FromStep2, step2Results[i]);

step5->input.set(kmeans::init::inputOfStep5FromStep3, step3->getPartialResult()->get(kmeans::init::outputOfStep3ForStep5));

step5->compute();

step5->finalizeCompute();

return step5->getResult()->get(kmeans::init::centroids);

}

return NumericTablePtr();

}

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids)

{

const bool isRoot = (rankId == mpi_root);

ByteBuffer nodeCentroids;

size_t CentroidsArchLength = (isRoot ? serializeDAALObject(initialCentroids.get(), nodeCentroids) : 0);

/* Get centroids from the root node */

MPI_Bcast(&CentroidsArchLength, sizeof(size_t), MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

nodeCentroids.resize(CentroidsArchLength);

MPI_Bcast(&nodeCentroids[0], CentroidsArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

NumericTablePtr centroids = NumericTable::cast(deserializeDAALObject(&nodeCentroids[0], CentroidsArchLength));

/* Create an algorithm to compute k-means on local nodes */

kmeans::Distributed<step1Local, algorithmFPType, kmeans::lloydDense> localAlgorithm(nClusters);

/* Set the input data set to the algorithm */

localAlgorithm.input.set(kmeans::data, pData);

localAlgorithm.input.set(kmeans::inputCentroids, centroids);

/* Compute k-means */

localAlgorithm.compute();

/* Serialize partial results required by step 2 */

ByteBuffer nodeResults;

size_t perNodeArchLength = serializeDAALObject(localAlgorithm.getPartialResult().get(), nodeResults);

/* Serialized data is of equal size on each node if each node called compute() equal number of times */

ByteBuffer serializedData;

if(isRoot)

serializedData.resize(perNodeArchLength * nBlocks);

/* Transfer partial results to step 2 on the root node */

MPI_Gather(&nodeResults[0], perNodeArchLength, MPI_CHAR, serializedData.size() ? &serializedData[0] : NULL,

perNodeArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(isRoot)

{

/* Create an algorithm to compute k-means on the master node */

kmeans::Distributed<step2Master, algorithmFPType, kmeans::lloydDense> masterAlgorithm(nClusters);

for(size_t i = 0; i < nBlocks; i++)

{

/* Deserialize partial results from step 1 */

SerializationIfacePtr ptr = deserializeDAALObject(&serializedData[perNodeArchLength * i], perNodeArchLength);

kmeans::PartialResultPtr dataForStep2FromStep1 = dynamicPointerCast<kmeans::PartialResult, SerializationIface>(ptr);

/* Set local partial results as input for the master-node algorithm */

masterAlgorithm.input.add(kmeans::partialResults, dataForStep2FromStep1);

}

/* Merge and finalizeCompute k-means on the master node */

masterAlgorithm.compute();

masterAlgorithm.finalizeCompute();

/* Retrieve the algorithm results */

return masterAlgorithm.getResult()->get(kmeans::centroids);

}

return NumericTablePtr();

}

~400 LOC total
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import daal4py as d4p

# Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

# assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

# on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

# finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py 
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Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis

Basic statistics 
for datasets

Low order 
moments

Variance-
Covariance 

matrix

Correlation and 
dependence

Cosine 
distance

Correlation 
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality 
reduction 

PCA

Outlier detection

Association rule 
mining (Apriori)

Univariate

MultivariateQuantiles

Order 
statistics

Optimization solvers 
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

31
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Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised 
learning

Regression

Linear
Regression

Classification

Weak 
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised 
learning

K-Means 
Clustering

EM for GMM

Collaborative 
filtering

Alternating
Least

Squares

Ridge 
Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

32
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Scalable Python Solutions in Incubation

HPAT

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

Automatically scales to multiple nodes with MPI
https://github.com/IntelLabs/hpat

daal4py

Ease-of-use of scikit-learn 
+ Performance of DAAL

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node, 

100x fewer LOC wrt DAAL for multi-node

https://github.com/IntelLabs/hpat
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$ mpirun -n 4 python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))



Intel-optimized DL frameworks
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Image Recognition

Object Detection

Image Segmentation

Language Translation

Text to Speech

Recommendation System

Deep learning usages & Key topologies

Resnet-50, 101
Inception V3

MobileNet
SqueezeNet

R-FCN
Faster-RCNN 

Yolo V2
SSD-VGG16, SSD-MobileNet

Mask R-CNN
3D-Unet 

GNMT
Transformer LT

Wavenet

Wide & Deep
NCF

There are many deep learning usages and topologies for each
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Intel Processors

AI (ML & DL) Software Stack for Intel® Processors 

Intel® MKL is a proprietary performance library for wide range of math and 
science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda, 
pip), Intel® Parallel Studio XE, Intel® System Studio

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (Tensorflow*, MXNet*, PyTorch*, PaddlePaddle*)
• Intel deep learning products (Nauta , BigDL, OpenVINO™ toolkit) 
• In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning  and machine learning 
applications for Intel® processors :
• Through the collaboration with framework maintainers to upstream changes 

(Tensorflow*, MXNet*, PyTorch, PaddlePaddle*) 
• Through Intel-optimized forks (Caffe*)
• By partnering to enable proprietary solutions

Intel® MKL-DNN is an open source performance library for deep learning 
applications (available at https://github.com/intel/mkl-dnn)

• Fast open source implementations for wide range of DNN functions

• Early access to new and experimental functionality

• Open for community contributionsIntel MKL-DNNIntel MKL

https://github.com/intel/mkl-dnn
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Examples of speedups on Intel® Xeon® Scalable Processors

Source: TENSORFLOW OPTIMIZED FOR INTEL® XEON™
*Other names and brands may be claimed as the property of 

others

http://aidc.gallery.video/detail/videos/day-2:-sessions/video/5790624640001/tensorflow-optimized-for-intel®-xeon™
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What’s Happening Under The Hood?
Intel® MKL-DNN Functionality

Intel® MKL-DNN v0.16

Convolution Direct 3D, Depthwise separable convolution
Winograd convolution
Deconvolution

Fully Connected Layer Inner Product

Pooling Maximum
Average (include/exclude padding)

Normalization LRN across/within channel, Batch 
normalization

Eltwise
(Loss/activation)

ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, s32, s16, s8, u8

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands 
may be claimed as the property of others. Copyright © 2016, Intel Corporation.

Intel Confidential

Features: 

 Training (float32) and inference (float32, int8)

 CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

 Optimized for Intel processors

Portability:

 Compilers: Intel® C++ Compiler/Clang/GCC/MSVC*

 OSes: Linux*, Windows*, Mac*

 Threading: OpenMP*, TBB

Frameworks that use Intel ® MKL-DNN:

IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*, Pytorch*, …
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Graph-level optimizations
AI Framework Software Optimizations Fusion
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• Converting to/from optimized 
layout can be less expensive 
than operating on un-optimized 
layout.

• All Intel® MKL-DNN operators 
use highly-optimized layouts 
for TensorFlow* tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

AI Framework Software Optimizations 
Layout Conversion
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Did you notice anything 
wrong with previous 
graph?

Problem: redundant 
conversions

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Conversion After Layout Propagation

AI Framework Software Optimizations 
Layout Propogation
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Graph-level optimizations (contd)

• Batch Normalization 
Folding

• Filter Caching

• Primitive Reuse



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

TensorFlow* graphs offer opportunities for 
parallel execution.

Threading model, Tune you Intel® MKL w/

1. inter_op_parallelism_threads = max 
number of operators that can be executed in 
parallel

2. intra_op_parallelism_threads = max 
number of threads to use for executing an 
operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of 
intra_op_parallelism_threads

More details: 
https://www.tensorflow.org/performance/perfor
mance_guide

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

>>> config = tf.ConfigProto()

>>> config.intra_op_parallelism_threads = 56

>>> config.inter_op_parallelism_threads = 2

>>> tf.Session(config=config)

AI Framework Software Optimizations 
Load Balancing

https://www.tensorflow.org/performance/performance_guide


Profiling



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

 Similar to Intel MKL verbose

 Enabled via environment variable or 
function call

 Output is in CSV format

Output includes:

 The marker, state and primitive kind

 Implementation details (e.g. jit:avx2)

 Primitive parameters

 Creation or execution time (in ms)

Example below (details here)
$ # MKLDNN_VERBOSE is unset
$ ./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$ ./examples/simple-net-c # | grep "mkldnn_verbose"
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805
passed

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html
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Integration with Intel VTune Amplifier

Full application analysis

Report types:

 CPU utilization

 Parallelization efficiency

 Memory traffic

Profiling of run-time generated code must 
be enabled at compile time

$ # building Intel MKL-DNN using cmake
$ cmake –DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install

$ # an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/lib64 -ljitprofiling" bazel build
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Intel-Optimized Frameworks: How To Get?

https://www.intel.ai/framework-optimizations

Check out our intel.ai for the framework optimizations page

https://www.intel.ai/framework-optimizations
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Intel® Optimization of Tensorflow*: How To Get?
Intel Tensorflow* install guide is available  https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

• Main trunk conda install tensorflow –c anaconda

• Intel Channel conda install tensorflow –c intel

• IDP Full conda create –n IDP intelpython3_full

Conda Package

• pip install intel-tensorflowPyPI Package

• $ docker pull docker.io/intelaipg/intel-optimized-
tensorflow:latest

• $ docker run -it -p 8888:8888 intelaipg/intel-optimized-
tensorflow

Docker Images

• https://github.com/tensorflow/tensorflow

• Refer install guide for more details
Build from Source

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://github.com/tensorflow/tensorflow
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Intel® Optimization of MxNet* and Pytorch*: How To 
Get?

• pip install mxnet-mkl==1.2.0 [–user]PyPI Package

• https://github.com/apache/incubator-mxnet

• Refer install guide for more details

Build from 
Source

Intel® Math Kernel Library for Deep

Neural Network (MKL-DNN) has been

integrated into official release of

PyTorch by default, thus users can get

performance benefit on Intel platform

without additional installation steps.

https://pytorch.org/

https://github.com/apache/incubator-mxnet
https://pytorch.org/


Scale AI workloads with Intel 
optimizations
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Feature Parity 
with Caffe* and 

Torch*

Lower TCO and 
improved ease of 
use with existing 

infrastructure

Deep Learning on 
Big Data Platform, 
Enabling Efficient 

Scale-Out

software.intel.com/bigdl
https://software.intel.com/en-us/articles/bigdl-distributed-deep-

learning-on-apache-spark

Designed for Spark* or Apache* Hadoop* 
clusters running on Intel® Xeon® processors!

1Open-source software is available for download at no cost; ‘free’ is also contingent upon running on existing idle CPU infrastructure where the operating cost is treated as a ‘sunk’ cost

Scale AI workloads: bigdl

High Performance Deep Learning for FREE on CPU Infrastructure1

Optimization Notice

Rich deep learning support

Extremely high performance.

https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/optimization-notice
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Distributed 
Tensorflow with 

Parameter Server

Uber’s open source Distributed 
training framework for TensorFlow

Source: https://eng.uber.com/horovod/

No 
Parameter 

Server

With 
Parameter 

Server

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

The ring all-reduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

Scale AI workloads: Horovod

Intel optimized AI frameworks 
support Horovod seemlessly
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SCALE AI: Intel® machine learning scaling library (mlsl)

https://github.com/intel/MLSL
https://usermanual.wiki/Document/DeveloperGuide.95427288.pdf
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2nd generation INTEL® XEON® SCALABLE PROCESSOR Cascade Lake

PerformanceTCO/Flexibility SecUrity
Built-in Acceleration with

Intel® Deep Learning Boost…

 IMT – Intel® Infrastructure 
Management Technologies

 ADQ – Application Device Queues

 SST – Intel® Speed Select Technology

 Intel® Security Essentials

 Intel® SecL: Intel® Security 
Libraries for Data Center

 TDT – Intel® Threat Detection 
TechnologyThroughput (img/s)

Drop-in compatible CPU on Intel® Xeon® Scalable platform

formerly known as

Begin your AI journey efficiently,
now with even more agility…

Hardware-Enhanced
Security…

deep 
learning 
throughput!1

Up to

30X

1 Based on Intel internal testing: 1X,5.7x,14x and 30x performance improvement based on Intel® Optimization for Café ResNet-50 inference throughput performance on Intel® Xeon® Scalable Processor. See Configuration Details 3 
Performance results are based on testing as of 7/11/2017(1x) ,11/8/2018 (5.7x), 2/20/2019 (14x) and 2/26/2019 (30x) and may not reflect all publically available security updates. No product can be absolutely secure. See configuration 
disclosure for details. ,
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are 
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information 
regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and 
MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests 
to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit:  http://www.intel.com/performance

http://www.intel.com/performance
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Intel® Deep Learning Boost (DL Boost)

NEW

INT8 07 06 05 04 03 02 01 00

Sign Mantissa

featuring Vector Neural Network Instructions (VNNI)

1. Fused multiply-add instruction

2. MKLDNN is optimized for VNNI

Speeds-up image classification, speech recognition, language 
translation, object detection and more
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1 5.7x inference throughput improvement with Intel® Optimizations for Caffe ResNet-50 on Intel® Xeon® Platinum 8180 Processor in Feb 2019 compared to performance at launch in July 2017. See configuration details on Config 1
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates. 
28/24/2018) Results have been estimated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect 
your actual performance. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific 
instruction sets covered by this notice. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for 
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved 
for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have 
been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any change to any 
of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with 
other products. For more complete information visit:  http://www.intel.com/performance

Baseline

50x

285x

2S Intel® Xeon® Scalable Processor (Skylake)
July 2017 July 2017 Skylake launch February 2019

vs. Baseline vs. Baseline

Deep learning performance on CPU
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Hardware + Software Improvements for Intel® Xeon® Processors

http://www.intel.com/performance
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• Please refer to : https://intel.github.io/mkl-
dnn/perf_profile.html

• $export MKLDNN_JIT_DUMP=1

• $./build/simple_net_int8_cpp

• $ objdump -D -b binary -mi386:x86-64 
mkldnn_dump__jit_avx512_core_x8s8s32x_conv_fwd_
ker_t.2.bin  |  grep vpdpbusd

• The sample output with VNNI instruction sets

VNNI usage verification by dumping JIT kernel

https://intel.github.io/mkl-dnn/perf_profile.html


Performance SuMMARY
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Training Performance on AWS C5 instance

System configuration and hardware specs at:

https://aws.amazon.com/blogs/machine-learning/

faster-training-with-optimized-tensorflow-1-6-

on-amazon-ec2-c5-and-p3-instances/

From the blog post

“Training a ResNet-50 benchmark
with synthetic ImageNet dataset using 
our optimized build of TensorFlow 1.6 
on a c5.18xlarge instance type was 
7.4X faster than training on the stock 
TensorFlow 1.6 binaries”

- Sumit Thakur, AWS

AWS Machine Learning Blog: Faster training with optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 instances
<https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/>

Data collected from AWS Machine learning blog

Now intel-optimized TensorFlow 1.13 is 
available on AWS DLAMI and 9.5x faster

https://aws.amazon.com/blogs/machine-
learning/aws-deep-learning-amis-now-come-with-
tensorflow-1-13-mxnet-1-4-and-support-amazon-

linux-2/

https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks
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TF Scaling Efficiency w/ horovod

Up to 94% of scaling w/ 2 MPI process

Up to 89 percent (ResNet-
50*) of scaling efficiency w/  
1 MPI Process 

InceptionResNet-v2 was able to maintain at least 80 percent 
scalability for up to 32 nodes w/ 1 MPI Process/node

https://www.intel.ai/multi-node-convergence-and-scaling-of-inception-resnet-v2-model-using-intel-xeon-processors/#gs.b1r0xv
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod
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Inference Throughput Performance
CPU optimized TensorFlow compared with unoptimized (stock) TensorFlow

For More Details: https://www.anaconda.com/tensorflow-cpu-optimizations-in-anaconda/



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

Intel AI OOB Tools for Cascade Lake

INTEL MODEL ZOO
1. Demonstrate the AI workloads and deep 
learning models (fp32 and int8) Intel has 
optimized and validated to run on Intel hardware

2. Deliver E2E inference solution at scale on 
selective use cases

(Data, AI model)  model zoo inference script  inference results

3. Make it easy to benchmark model 
performance on Intel hardware both in the cloud 
or baremetal

INTEL QUANTIZATION TOOLS 
(int8 inference)

1. Post-training model optimization+ quantization process on 
Intel® Xeon processors

2. Reduced model size resulting in FASTER inference utilizing 
VNNI instructions, while maintaining accuracy

FP32 model

Quantized model INT8 Model

MKL DNN Primitive

INT8

INT8
FP32

Scale
Low Precision Inference

https://github.com/IntelAI/models https://github.com/IntelAI/tools
https://github.com/intel/Detectron
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PretrAINED models pubhlished on top toplogies
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Article Plug
Intel–Optimized TensorFlow* Performance Considerations

https://software.intel.com/en-us/articles/maximize-
tensorflow-performance-on-cpu-considerations-and-
recommendations-for-inference

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference


Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Free Support: Intel® AI Frameworks Forum

https://forums.intel.com
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More information at 

www.intel.ai/framework-optimizations/ 

Call to Action

LEARN

EXPLORE

ENGAGE

Use Intel’s performance-

optimized libraries & frameworks

Use Our Free Support: forums.intel.com

Choose “Intel Optimized AI Frameworks” from 

list

https://ai.intel.com/framework-optimizations/
https://ai.intel.com/framework-optimizations/

