
AI Software
Optimizations on Intel

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

Software

hardware

community

nGraph

OpenVINO™
toolkit

Nauta™

ML
Libraries

Intel AI
Builders

Intel AI
Developer

Program

Breaking barriers between Theory and reality

Simplify AI
via our robust community

Choose any approach
from analytics to deep learning

Tame your data deluge
with our data layer expertise

Deploy AI anywhere
with unprecedented HW choice

Speed up development
with open AI software

Partner with Intel to accelerate your AI journey

Scale with confidence
on the platform for IT & cloud

*

*

*

*

*

*Other names and brands may be claimed as the property of others

Intel AI
DevCloud

BigDL on
Spark*

Intel®
MKL-DNN

www.intel.ai
Optimization Notice

https://software.intel.com/en-us/articles/optimization-notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

© 2019 Intel Corporation

1 An open source version is available at: 01.org/openvinotoolkit *Other names and brands may be claimed as the property of others.
Developer personas show above represent the primary user base for each row, but are not mutually-exclusive
All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

libraries
Data
scientists

Kernels
Library
developers

DEEP LEARNING FRAMEWORKS

Optimized for CPU & more

Status & installation guides

More framework optimizations
underway (e.g. PaddlePaddle*,

CNTK* & more)

MACHINE LEARNING (ML)

Python R Distributed
• Scikit-

learn
• Pandas
• NumPy

• Cart
• Random

Forest
• e1071

• MlLib (on Spark)
• Mahout

ANALYTICS & ML

Intel®
Distribution
for Python*

Intel® Data
Analytics

Library
Intel distribution

optimized for
machine learning

Intel® Data Analytics
Acceleration Library

(incl machine learning)

DEEP LEARNING GRAPH COMPILER

Intel® nGraph™ Compiler (Beta)
Open source compiler for deep learning model

computations optimized for multiple devices (CPU, GPU,
NNP) from multiple frameworks (TF, MXNet, ONNX)

DEEP LEARNING

Intel® Math Kernel
Library for Deep
Neural Networks

(Intel® MKL-DNN)
Open source DNN functions for

CPU / integrated graphics

*

*
*

*
FOR

*

*

Speed up development
with open AI software

Optimization Notice

http://ai.intel.com/framework-optimizations/
http://www.scikit-learn.org/
http://www.scikit-learn.org/
http://pandas.pydata.org/
http://www.numpy.org/
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/package=e1071
https://spark.apache.org/mllib/
https://mahout.apache.org/
https://software.intel.com/en-us/articles/optimization-notice

Intel Distribution for Python

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Introduction to Python* Performance

General Python behavior (Cpython)

 Cpython provides an interpreter to run commands from Python Bytecode (.pyc)

 Compiling doesn’t go down to x86 instructions, but instead

 Python interpreter Compiled Bytecode Python Virtual Machine

 Allows for very flexible bytecode, and the Python interpreter is the main ingredient

 Cpython and PyPy have a Global Interpreter Lock (GIL)

thread w1

thread w2

thread w3

rel/acq
GIL

rel/acq
GIL

rel/acq
GIL

Cpython Global Interpreter Lock

run

run

run

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Loop
(row 1)

Loop
(row 2)

Loop (...
row n)

Loop
(row 1)

Compute append

Loop
(row 2)

Compute append

Loop
(… row n)

Compute append

For loop
call

For loop
call

Python-level only (Single-threaded)

Python and NumPy dispatch

6

Why does this matter? (Python layers)

 Example with array loops

 GIL will force loops to run in a single threaded fashion

 NumPy* dispatch helps get around single-threaded by
using C functions

 C functions can then call processor vectorization

Introduction to Python* Performance, cont.

Getting out of Python layer is key for performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Introduction to Python* Performance, cont.

Python

NumPy

Intel® Math
Kernel Library
(Intel® MKL)

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction
overhead. No advanced types.

Gets around the GIL
(multi-thread and multi-core)
BLAS API can be the bottleneck

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware
vectorization

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

Intel® MKL included with Anaconda* standard bundle; is Free for Python

The layers of quantitative Python

 The Python language is interpreted and has
many type checks to make it flexible

 Each level has various tradeoffs; NumPy* value
proposition is immediately seen

 For best performance, escaping the Python
layer early is best method

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance of Python

8

Python + Numba*

C

LLVM-based compiler
Multiple threading runtimes

Optimizing compiler
OpenMP*/TBB/pthreads

Small %% performance gap

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

http://numba.pydata.org/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ecosystem compatibilityGreater ProductivityFaster Performance

Prebuilt & Accelerated Packages Supports Python 2.7 & 3.6, conda, pip

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism,
Multithreading, Language Extensions

Accelerated NumPy/SciPy/scikit-learn with
Intel® MKL1 & Intel® DAAL2

Data analytics, machine learning with scikit-
learn, pyDAAL

Optimized run-times Intel MPI®, Intel® TBB

Scale with Numba* & Cython*

Includes optimized mpi4py, works with
Dask* & PySpark*

Optimized for latest Intel® architecture

Prebuilt & optimized packages for
numerical computing, machine/deep
learning, HPC & data analytics

Drop in replacement for existing Python -
Usually with no code changes required

Jupyter* notebooks, Matplotlib included

Conda build recipes included in packages

Free download & free for all uses including
commercial deployment

Compatible & powered by Anaconda*,
supports conda & pip

Distribution & individual optimized
packages also available at conda &
Anaconda.org, YUM/APT, Docker image
on DockerHub

Optimizations upstreamed to main Python
trunk

Commercial support through Intel® Parallel
Studio XE 2018

1Intel® Math Kernel Library
2Intel® Data Analytics Acceleration Library

Accelerate libraries with Intel® Distribution for Python*
High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

Drop-in replacement for existing
Python

Usually No code changes required!

Intel MKL accelerated Numpy, and
scipy now in Anaconda!

9

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

Learn More: software.intel.com/distribution-for-python

mpi4pysmp

tbb4pydaal4py

Data acquisition &
preprocessing

Numerical/Scientific computing &
machine learning

Composable
multi-threading

Distributed
parallelism

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Intel® Distribution Python* Distribution Channels

Intel
Software

Tools suite

https://software.intel.com/en-us/distribution-for-python Standalone
Installer

Open-source
Channels

Intel®
AD SDK

Linux*Windows*

macOS*

Available on Google Cloud Platform: Deep Learning Images

https://blog.kovalevskyi.com/deeplearning-images-revision-m9-intel-optimized-
images-273164612e93

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Installing Intel® Distribution for Python* 2019

Standalone
Installer

Anaconda.org
Anaconda.org/intel channel

YUM/APT

Docker Hub

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel

> conda install intelpython3_full

> conda install intelpython3_core

docker pull intelpython/intelpython3_full

Access for yum/apt:
https://software.intel.com/en-us/articles/installing-intel-free-libs-and-python

PyPI
pip install intel-numpy intel-scipy intel-sckit-learn

https://software.intel.com/en-us/articles/installing-the-intel-distribution-for-python-and-
intel-performance-libraries-with-pip-and

https://software.intel.com/en-us/articles/installing-the-intel-distribution-for-python-and-intel-performance-libraries-with-pip-and

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Xeon
Close to native code Umath Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

0%

20%

40%

60%

80%

100%

ar
ra

y*
ar

ra
y

ar
ra

y*
sc

al
ar

ar
ra

y+
ar

ra
y

ar
ra

y+
sc

al
ar

ar
ra

y-
ar

ra
y

ar
ra

y-
sc

al
ar er

f

ex
p

in
vs

q
rt

lo
g1

0

Problem Size = 2.5M

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

 m
ea

su
re

d

ag
ai

n
st

 n
at

iv
e

co
d

e
w

it
h

 In
te

l®
 M

K
L

Stock Python Intel® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for
Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite
0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2
sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel
Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this
notice. Notice revision #20110804.

87%
native efficiency on

Black-Scholes Formula code
with Intel numpy + numba.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Python usage

Intel® MKL included in Intel® Distribution of Python*

Numpy accelerated out of the box

No code changes

What MKL brings to Python

Single-Core: vectorization, prefetching, cache utilization

 SIMD support for AVX-512 ISA

Multi-Many Core (processor/socket) level parallelization

 OpenMP and TBB support

Multi-Socket (node) level parallelization & Clusters scaling

Intel® MKL: Python* Integration

Requires No Python Code Changes

14

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-
Scalable-processors-on-GCP.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Performance Against Native* Code

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Performance Against Native* Code, cont.

Intel® data analytics acceleration library
(intel® daal)

Included in Intel® Parallel Studio and Intel® Distribution for Python*

Also available as Standalone Version (includes priority support)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Faster Machine Learning & Analytics with Intel® DAAL

• Features highly tuned functions for classical machine learning and
analytics performance across spectrum of Intel® architecture devices

• Optimizes data ingestion together with algorithmic computation for
highest analytics throughput

• Includes Python*, C++, and Java* APIs and connectors to popular data
sources including Spark* and Hadoop*

• New High-level Python API, daal4py introduced

• Out-of-box acceleration for key scikit-learn* algorithms

• Free and open source community-supported versions are available, as
well as paid versions that include premium support.

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering,

Normalization

Aggregation,
Dimension Reduction

Summary
Statistics

Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis testing
Model errors

What’s New in 2018 and 2019

 New Algorithms:

 Logistic regression

 Classification & Regression GBT

 Classification & Regression Decision Forest

 Spark* MLlib-compatible API wrappers for easy
substitution of faster Intel DAAL functions

 Improved APIs for ease of use

 Repository distribution via PIP, Conda YUM and APT

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Distributed
Processing

Online
Processing

D1

D2

D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)
Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch
Processing

D1
Dk-

1

Dk
…

Append

R = F(D1,…,Dk)

Processing Modes

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Intel® DAAL

daal4py

Scikit-Learn
Equivalents

Scikit-Learn
API

Compatible

PCA
KMeans

LinearRegression
Ridge

SVC
pairwise_distances

logistic_regression_path

Use directly for
• Scaling to multiple nodes
• Streaming data
• Non-homogeneous

dataframes

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Accelerating scikit-learn through daal4py

> python -m daal4py <your-scikit-learn-script>
Monkey-patch any scikit-learn

on the command-line

import daal4py.sklearn
daal4py.sklearn.patch_sklearn()

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied
passes scikit-learn test-suite

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Get a fly with daal4py
• Close to native performance through Intel® DAAL

• Efficient MPI scale-out

• Streaming
Fast & Scalable

• Intuitive usage model

• PicklableEasy to use

• Plugs into scikit-learn

• Plugs into HPAT/NumbaFlexible

• Open source:
https://github.com/IntelPython/daal4pyOpen

https://github.com/IntelPython/daal4py

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Scaling Machine Learning Beyond a Single Node

scikit-learn daal4py

Try it out! conda install -c intel daal4py

Simple Python API
Powers scikit-learn

Intel®
MPI

Powered by DAAL

Scalable to multiple nodes

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks (TBB)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Intel® Distribution for Python* Scikit-learn Optimizations, cont.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB
of data in less than 48 milliseconds.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Distributed K-Means Using DAAL (C++ API)
***/

/*

! Content:

! C++ sample of K-Means clustering in the distributed processing mode

!**/

#include <mpi.h>

#include "daal.h"

#include "service.h"

#include "stdio.h"

#include <iostream>

using namespace std;

using namespace daal;

using namespace daal::algorithms;

using namespace daal::services;

typedef std::vector<byte> ByteBuffer;

typedef float algorithmFPType; /* Algorithm floating-point type */

/* K-Means algorithm parameters */

const size_t nClusters = 20;

const size_t nIterations = 5;

const size_t nBlocks = 4;

/* Input data set parameters */

const string dataFileNames[4] =

{

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv",

"./data/distributed/kmeans_dense.csv", "./data/distributed/kmeans_dense.csv"

};

#define mpi_root 0

const int step3ResultSizeTag = 1;

const int step3ResultTag = 2;

NumericTablePtr loadData(int rankId)

{

/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */

FileDataSource<CSVFeatureManager> dataSource(dataFileNames[rankId], DataSource::doAllocateNumericTable,

DataSource::doDictionaryFromContext);

/* Retrieve the data from the input file */

dataSource.loadDataBlock();

return dataSource.getNumericTable();

}

template <kmeans::init::Method method>

NumericTablePtr initCentroids(int rankId, const NumericTablePtr& pData);

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids);

template <kmeans::init::Method method>

void runKMeans(int rankId, const NumericTablePtr& pData, const char* methodName)

{

if(rankId == mpi_root)

std::cout << "K-means init parameters: method = " << methodName << std::endl;

NumericTablePtr centroids = initCentroids<method>(rankId, pData);

for(size_t it = 0; it < nIterations; it++)

centroids = computeCentroids(rankId, pData, centroids);

/* Print the clusterization results */

if(rankId == mpi_root)

printNumericTable(centroids, "First 10 dimensions of centroids:", 20, 10);

}

int main(int argc, char *argv[])

{

int rankId, comm_size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

MPI_Comm_rank(MPI_COMM_WORLD, &rankId);

NumericTablePtr pData = loadData(rankId);

runKMeans<kmeans::init::plusPlusDense>(rankId, pData, "plusPlusDense");

runKMeans<kmeans::init::parallelPlusDense>(rankId, pData, "parallelPlusDense");

MPI_Finalize();

return 0;

}

static int lengthsToShifts(const int lengths[nBlocks], int shifts[nBlocks])

{

int shift = 0;

for(size_t i = 0; i < nBlocks; shift += lengths[i], ++i)

shifts[i] = shift;

return shift;

}

/* Send the value to all processes in the group and collect received values into one table */

static NumericTablePtr allToAll(const NumericTablePtr& value)

{

std::vector<NumericTablePtr> aRes;

ByteBuffer dataToSend;

if(value.get())

serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();

int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Allgather(&dataToSendLength, sizeof(int), MPI_CHAR, perNodeArchLength, sizeof(int), MPI_CHAR, MPI_COMM_WORLD);

int perNodeArchShift[nBlocks];

const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);

if(!totalToReceive)

return NumericTablePtr();

ByteBuffer dataToReceive(totalToReceive);

MPI_Allgatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, &dataToReceive[0], perNodeArchLength, perNodeArchShift, MPI_CHAR, MPI_COMM_WORLD);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)

{

if(!perNodeArchLength[i])

continue;

NumericTablePtr pTbl = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

aRes.push_back(pTbl);

}

if(!aRes.size())

return NumericTablePtr();

if(aRes.size() == 1)

return aRes[0];

/* For parallelPlus algorithm */

RowMergedNumericTablePtr pMerged(new RowMergedNumericTable());

for(size_t i = 0; i < aRes.size(); ++i)

pMerged->addNumericTable(aRes[i]);

return NumericTable::cast(pMerged);

}

/* Send the value to all processes in the group and collect received values into one table */

static void allToMaster(int rankId, const NumericTablePtr& value, std::vector<NumericTablePtr>& aRes)

{

const bool isRoot = (rankId == mpi_root);

aRes.clear();

ByteBuffer dataToSend;

if(value.get())

serializeDAALObject(value.get(), dataToSend);

const int dataToSendLength = dataToSend.size();

int perNodeArchLength[nBlocks];

for(size_t i = 0; i < nBlocks; i++)

perNodeArchLength[i] = 0;

MPI_Gather(&dataToSendLength, sizeof(int), MPI_CHAR, isRoot ? perNodeArchLength : NULL, sizeof(int),

MPI_CHAR, mpi_root, MPI_COMM_WORLD);

ByteBuffer dataToReceive;

int perNodeArchShift[nBlocks];

if(isRoot)

{

const int totalToReceive = lengthsToShifts(perNodeArchLength, perNodeArchShift);

if(!totalToReceive)

return;

dataToReceive.resize(totalToReceive);

}

MPI_Gatherv(&dataToSend[0], dataToSendLength, MPI_CHAR, isRoot ? &dataToReceive[0] : NULL,

perNodeArchLength, perNodeArchShift, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

return;

aRes.resize(nBlocks);

for(size_t i = 0, shift = 0; i < nBlocks; shift += perNodeArchLength[i], ++i)

{

if(perNodeArchLength[i])

aRes[i] = NumericTable::cast(deserializeDAALObject(&dataToReceive[shift], perNodeArchLength[i]));

}

}

template <kmeans::init::Method method>

NumericTablePtr initStep1(int rankId, const NumericTablePtr& pData)

{

const size_t nVectorsInBlock = pData->getNumberOfRows();

/* Create an algorithm object for the K-Means algorithm */

kmeans::init::Distributed<step1Local, algorithmFPType, method> local(nClusters, nBlocks*nVectorsInBlock, rankId*nVectorsInBlock);

local.input.set(kmeans::init::data, pData);

local.compute();

return allToAll(local.getPartialResult()->get(kmeans::init::partialCentroids));

}

template <kmeans::init::Method method>

void initStep2(int rankId, const NumericTablePtr& pData, DataCollectionPtr& localNodeData,

const NumericTablePtr& step2Input, bool bFirstIteration, std::vector<NumericTablePtr>& step2Results,

bool bOutputForStep5Required = false)

{

kmeans::init::Distributed<step2Local, algorithmFPType, method> step2(nClusters, bFirstIteration);

step2.parameter.outputForStep5Required = bOutputForStep5Required;

step2.input.set(kmeans::init::data, pData);

step2.input.set(kmeans::init::internalInput, localNodeData);

step2.input.set(kmeans::init::inputOfStep2, step2Input);

step2.compute();

if(bFirstIteration)

localNodeData = step2.getPartialResult()->get(kmeans::init::internalResult);

allToMaster(rankId, step2.getPartialResult()->get(

bOutputForStep5Required ? kmeans::init::outputOfStep2ForStep5 : kmeans::init::outputOfStep2ForStep3), step2Results);

}

template <kmeans::init::Method method>

NumericTablePtr initStep3(kmeans::init::Distributed<step3Master, algorithmFPType, method>& step3, std::vector<NumericTablePtr>& step2Results)

{

for(size_t i = 0; i < step2Results.size(); ++i)

step3.input.add(kmeans::init::inputOfStep3FromStep2, i, step2Results[i]);

step3.compute();

ByteBuffer buff;

NumericTablePtr step4InputOnRoot;

for(size_t i = 0; i < nBlocks; ++i)

{

NumericTablePtr pTbl = step3.getPartialResult()->get(kmeans::init::outputOfStep3ForStep4, i); /* can be null */

if(i == mpi_root)

{

step4InputOnRoot = pTbl;

continue;

}

buff.clear();

size_t size = pTbl.get() ? serializeDAALObject(pTbl.get(), buff) : 0;

MPI_Send(&size, sizeof(size_t), MPI_BYTE, int(i), step3ResultSizeTag, MPI_COMM_WORLD);

if(size)

MPI_Send(&buff[0], size, MPI_BYTE, int(i), step3ResultTag, MPI_COMM_WORLD);

}

return step4InputOnRoot;

}

NumericTablePtr receiveStep3Output(int rankId)

{

size_t size = 0;

MPI_Status status;

MPI_Recv(&size, sizeof(size_t), MPI_BYTE, mpi_root, step3ResultSizeTag, MPI_COMM_WORLD, &status);

if(size)

{

ByteBuffer buff(size);

MPI_Recv(&buff[0], size, MPI_BYTE, mpi_root, step3ResultTag, MPI_COMM_WORLD, &status);

return NumericTable::cast(deserializeDAALObject(&buff[0], size));

}

return NumericTablePtr();

}

template <kmeans::init::Method method>

NumericTablePtr initStep4(int rankId, const NumericTablePtr& pData, const DataCollectionPtr& localNodeData,

const NumericTablePtr& step4Input)

{

NumericTablePtr step4Result;

if(step4Input)

{

/* Create an algorithm object for the step 4 */

kmeans::init::Distributed<step4Local, algorithmFPType, method> step4(nClusters);

/* Set the input data to the algorithm */

step4.input.set(kmeans::init::data, pData);

step4.input.set(kmeans::init::internalInput, localNodeData);

step4.input.set(kmeans::init::inputOfStep4FromStep3, step4Input);

/* Compute and get the result */

step4.compute();

step4Result = step4.getPartialResult()->get(kmeans::init::outputOfStep4);

}

return allToAll(step4Result);

}

template<>

NumericTablePtr initCentroids<kmeans::init::plusPlusDense>(int rankId, const NumericTablePtr& pData)

{

const bool isRoot = (rankId == mpi_root);

const kmeans::init::Method method = kmeans::init::plusPlusDense;

/* Internal data to be stored on the local nodes */

DataCollectionPtr localNodeData;

/* Numeric table to collect the results */

RowMergedNumericTablePtr pCentroids(new RowMergedNumericTable());

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);

pCentroids->addNumericTable(step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;

SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iCenter = 1; iCenter < nClusters; ++iCenter)

{

std::vector<NumericTablePtr> step2ResultsOnMaster;

initStep2<method>(rankId, pData, localNodeData, step2Input, iCenter == 1, step2ResultsOnMaster);

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);

pCentroids->addNumericTable(step2Input);

}

return daal::data_management::convertToHomogen<float>(*pCentroids); /* can be returned as pCentroids as well */

}

template<>

NumericTablePtr initCentroids<kmeans::init::parallelPlusDense>(int rankId, const NumericTablePtr& pData)

{

const bool isRoot = (rankId == mpi_root);

const kmeans::init::Method method = kmeans::init::parallelPlusDense;

/* default value of nRounds used by all steps */

const size_t nRounds = kmeans::init::Parameter(nClusters).nRounds;

/* Create an algorithm object for the step 5 */

typedef kmeans::init::Distributed<step5Master, algorithmFPType, method> Step5Master;

SharedPtr<Step5Master> step5(isRoot ? new Step5Master(nClusters) : NULL);

/* Internal data to be stored on the local nodes */

DataCollectionPtr localNodeData;

/* First step on the local nodes */

NumericTablePtr step2Input = initStep1<method>(rankId, pData);

if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

/* Create an algorithm object for the step 3 */

typedef kmeans::init::Distributed<step3Master, algorithmFPType, method> Step3Master;

SharedPtr<Step3Master> step3(isRoot ? new Step3Master(nClusters) : NULL);

for(size_t iRound = 0; iRound < nRounds; ++iRound)

{

/* Perform step 2 */

std::vector<NumericTablePtr> step2ResultsOnMaster;

initStep2<method>(rankId, pData, localNodeData, step2Input, iRound == 0, step2ResultsOnMaster);

/* Perform step 3 */

NumericTablePtr step4Input = (step3 ? initStep3<method>(*step3, step2ResultsOnMaster) : receiveStep3Output(rankId));

/* Perform step 4 */

step2Input = initStep4<method>(rankId, pData, localNodeData, step4Input);

if(step5)

step5->input.add(kmeans::init::inputCentroids, step2Input);

}

/* One more step 2 */

std::vector<NumericTablePtr> step2Results;

initStep2<method>(rankId, pData, localNodeData, step2Input, false, step2Results, true);

if(step5) /* isRoot == true */

{

for(size_t i = 0; i < step2Results.size(); ++i)

step5->input.add(kmeans::init::inputOfStep5FromStep2, step2Results[i]);

step5->input.set(kmeans::init::inputOfStep5FromStep3, step3->getPartialResult()->get(kmeans::init::outputOfStep3ForStep5));

step5->compute();

step5->finalizeCompute();

return step5->getResult()->get(kmeans::init::centroids);

}

return NumericTablePtr();

}

NumericTablePtr computeCentroids(int rankId, const NumericTablePtr& pData, const NumericTablePtr& initialCentroids)

{

const bool isRoot = (rankId == mpi_root);

ByteBuffer nodeCentroids;

size_t CentroidsArchLength = (isRoot ? serializeDAALObject(initialCentroids.get(), nodeCentroids) : 0);

/* Get centroids from the root node */

MPI_Bcast(&CentroidsArchLength, sizeof(size_t), MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(!isRoot)

nodeCentroids.resize(CentroidsArchLength);

MPI_Bcast(&nodeCentroids[0], CentroidsArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

NumericTablePtr centroids = NumericTable::cast(deserializeDAALObject(&nodeCentroids[0], CentroidsArchLength));

/* Create an algorithm to compute k-means on local nodes */

kmeans::Distributed<step1Local, algorithmFPType, kmeans::lloydDense> localAlgorithm(nClusters);

/* Set the input data set to the algorithm */

localAlgorithm.input.set(kmeans::data, pData);

localAlgorithm.input.set(kmeans::inputCentroids, centroids);

/* Compute k-means */

localAlgorithm.compute();

/* Serialize partial results required by step 2 */

ByteBuffer nodeResults;

size_t perNodeArchLength = serializeDAALObject(localAlgorithm.getPartialResult().get(), nodeResults);

/* Serialized data is of equal size on each node if each node called compute() equal number of times */

ByteBuffer serializedData;

if(isRoot)

serializedData.resize(perNodeArchLength * nBlocks);

/* Transfer partial results to step 2 on the root node */

MPI_Gather(&nodeResults[0], perNodeArchLength, MPI_CHAR, serializedData.size() ? &serializedData[0] : NULL,

perNodeArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

if(isRoot)

{

/* Create an algorithm to compute k-means on the master node */

kmeans::Distributed<step2Master, algorithmFPType, kmeans::lloydDense> masterAlgorithm(nClusters);

for(size_t i = 0; i < nBlocks; i++)

{

/* Deserialize partial results from step 1 */

SerializationIfacePtr ptr = deserializeDAALObject(&serializedData[perNodeArchLength * i], perNodeArchLength);

kmeans::PartialResultPtr dataForStep2FromStep1 = dynamicPointerCast<kmeans::PartialResult, SerializationIface>(ptr);

/* Set local partial results as input for the master-node algorithm */

masterAlgorithm.input.add(kmeans::partialResults, dataForStep2FromStep1);

}

/* Merge and finalizeCompute k-means on the master node */

masterAlgorithm.compute();

masterAlgorithm.finalizeCompute();

/* Retrieve the algorithm results */

return masterAlgorithm.getResult()->get(kmeans::centroids);

}

return NumericTablePtr();

}

~400 LOC total

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

import daal4py as d4p

Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis

Basic statistics
for datasets

Low order
moments

Variance-
Covariance

matrix

Correlation and
dependence

Cosine
distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics

Optimization solvers
(SGD, AdaGrad, lBFGS)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

31

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® DAAL Algorithms supported by daal4py
Machine Learning

Supervised
learning

Regression

Linear
Regression

Classification

Weak
learner*

Boosting*

(Ada, Brown, Logit)

Naïve Bayes

kNN

Support Vector Machine

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least

Squares

Ridge
Regression

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

Decision Forest

Decision Tree

GradientBoosting

*Expected with DAAL® 2020

32

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Scalable Python Solutions in Incubation

HPAT

• Statically compiles analytics code to binary

• Simply annotate with @hpat.jit

• Built on Anaconda Numba compiler

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

Automatically scales to multiple nodes with MPI
https://github.com/IntelLabs/hpat

daal4py

Ease-of-use of scikit-learn
+ Performance of DAAL

• High-level Python API for DAAL

• 10x fewer LOC wrt DAAL for single node,

100x fewer LOC wrt DAAL for multi-node

https://github.com/IntelLabs/hpat

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

$ mpirun -n 4 python ./process_times.py

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit
def process_times():

df = pq.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])
df[‘hr’] = df.event_time.map(lambda x: x.hour)
df[‘minute’] = df.event_time.map(lambda x: x.minute)
df[‘second’] = df.event_time.map(lambda x: x.second)
df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
df[‘event_date’] = df.event_time.map(lambda x: x.date())
df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))

Intel-optimized DL frameworks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Image Recognition

Object Detection

Image Segmentation

Language Translation

Text to Speech

Recommendation System

Deep learning usages & Key topologies

Resnet-50, 101
Inception V3

MobileNet
SqueezeNet

R-FCN
Faster-RCNN

Yolo V2
SSD-VGG16, SSD-MobileNet

Mask R-CNN
3D-Unet

GNMT
Transformer LT

Wavenet

Wide & Deep
NCF

There are many deep learning usages and topologies for each

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel Processors

AI (ML & DL) Software Stack for Intel® Processors

Intel® MKL is a proprietary performance library for wide range of math and
science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda,
pip), Intel® Parallel Studio XE, Intel® System Studio

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (Tensorflow*, MXNet*, PyTorch*, PaddlePaddle*)
• Intel deep learning products (Nauta , BigDL, OpenVINO™ toolkit)
• In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning and machine learning
applications for Intel® processors :
• Through the collaboration with framework maintainers to upstream changes

(Tensorflow*, MXNet*, PyTorch, PaddlePaddle*)
• Through Intel-optimized forks (Caffe*)
• By partnering to enable proprietary solutions

Intel® MKL-DNN is an open source performance library for deep learning
applications (available at https://github.com/intel/mkl-dnn)

• Fast open source implementations for wide range of DNN functions

• Early access to new and experimental functionality

• Open for community contributionsIntel MKL-DNNIntel MKL

https://github.com/intel/mkl-dnn

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Examples of speedups on Intel® Xeon® Scalable Processors

Source: TENSORFLOW OPTIMIZED FOR INTEL® XEON™
*Other names and brands may be claimed as the property of

others

http://aidc.gallery.video/detail/videos/day-2:-sessions/video/5790624640001/tensorflow-optimized-for-intel®-xeon™

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What’s Happening Under The Hood?
Intel® MKL-DNN Functionality

Intel® MKL-DNN v0.16

Convolution Direct 3D, Depthwise separable convolution
Winograd convolution
Deconvolution

Fully Connected Layer Inner Product

Pooling Maximum
Average (include/exclude padding)

Normalization LRN across/within channel, Batch
normalization

Eltwise
(Loss/activation)

ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, s32, s16, s8, u8

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands
may be claimed as the property of others. Copyright © 2016, Intel Corporation.

Intel Confidential

Features:

 Training (float32) and inference (float32, int8)

 CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

 Optimized for Intel processors

Portability:

 Compilers: Intel® C++ Compiler/Clang/GCC/MSVC*

 OSes: Linux*, Windows*, Mac*

 Threading: OpenMP*, TBB

Frameworks that use Intel ® MKL-DNN:

IntelCaffe, TensorFlow*, MxNet*, PaddlePaddle*, Pytorch*, …

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Graph-level optimizations
AI Framework Software Optimizations Fusion

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Converting to/from optimized
layout can be less expensive
than operating on un-optimized
layout.

• All Intel® MKL-DNN operators
use highly-optimized layouts
for TensorFlow* tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

AI Framework Software Optimizations
Layout Conversion

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Did you notice anything
wrong with previous
graph?

Problem: redundant
conversions

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Conversion After Layout Propagation

AI Framework Software Optimizations
Layout Propogation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Graph-level optimizations (contd)

• Batch Normalization
Folding

• Filter Caching

• Primitive Reuse

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

TensorFlow* graphs offer opportunities for
parallel execution.

Threading model, Tune you Intel® MKL w/

1. inter_op_parallelism_threads = max
number of operators that can be executed in
parallel

2. intra_op_parallelism_threads = max
number of threads to use for executing an
operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of
intra_op_parallelism_threads

More details:
https://www.tensorflow.org/performance/perfor
mance_guide

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

>>> config = tf.ConfigProto()

>>> config.intra_op_parallelism_threads = 56

>>> config.inter_op_parallelism_threads = 2

>>> tf.Session(config=config)

AI Framework Software Optimizations
Load Balancing

https://www.tensorflow.org/performance/performance_guide

Profiling

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel MKL-DNN verbose mode overview

Simple yet powerful analysis tool:

 Similar to Intel MKL verbose

 Enabled via environment variable or
function call

 Output is in CSV format

Output includes:

 The marker, state and primitive kind

 Implementation details (e.g. jit:avx2)

 Primitive parameters

 Creation or execution time (in ms)

Example below (details here)
$ # MKLDNN_VERBOSE is unset
$./examples/simple-net-c
passed

$ export MKLDNN_VERBOSE=1 # report only execution parameters and runtime
$./examples/simple-net-c # | grep "mkldnn_verbose"
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_oihw out:f32_Ohwi8o,num:1,96x3x11x11,12.2249
mkldnn_verbose,exec,eltwise,jit:avx2,forward_training,fdata:nChw8c,alg:eltwise_relu,mb8ic96ih55iw55,0.437988
mkldnn_verbose,exec,lrn,jit:avx2,forward_training,fdata:nChw8c,alg:lrn_across_channels,mb8ic96ih55iw55,1.70093
mkldnn_verbose,exec,reorder,jit:uni,undef,in:f32_nChw8c out:f32_nchw,num:1,8x96x27x27,0.924805
passed

https://software.intel.com/en-us/articles/verbose-mode-supported-in-intel-mkl-112
https://intel.github.io/mkl-dnn/perf_profile.html

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Integration with Intel VTune Amplifier

Full application analysis

Report types:

 CPU utilization

 Parallelization efficiency

 Memory traffic

Profiling of run-time generated code must
be enabled at compile time

$ # building Intel MKL-DNN using cmake
$ cmake –DVTUNEROOT=/opt/intel/vtune_amplifier_2018 .. && make install

$ # an alternative: building Intel MKL-DNN using sources directly, e.g. in TensorFlow
$ CFLAGS="-I$VTUNEROOT/include -DJIT_PROFILING_VTUNE" LDFLAGS="-L$VTUNEROOT/lib64 -ljitprofiling" bazel build

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel-Optimized Frameworks: How To Get?

https://www.intel.ai/framework-optimizations

Check out our intel.ai for the framework optimizations page

https://www.intel.ai/framework-optimizations

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Optimization of Tensorflow*: How To Get?
Intel Tensorflow* install guide is available https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

• Main trunk conda install tensorflow –c anaconda

• Intel Channel conda install tensorflow –c intel

• IDP Full conda create –n IDP intelpython3_full

Conda Package

• pip install intel-tensorflowPyPI Package

• $ docker pull docker.io/intelaipg/intel-optimized-
tensorflow:latest

• $ docker run -it -p 8888:8888 intelaipg/intel-optimized-
tensorflow

Docker Images

• https://github.com/tensorflow/tensorflow

• Refer install guide for more details
Build from Source

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://github.com/tensorflow/tensorflow

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Optimization of MxNet* and Pytorch*: How To
Get?

• pip install mxnet-mkl==1.2.0 [–user]PyPI Package

• https://github.com/apache/incubator-mxnet

• Refer install guide for more details

Build from
Source

Intel® Math Kernel Library for Deep

Neural Network (MKL-DNN) has been

integrated into official release of

PyTorch by default, thus users can get

performance benefit on Intel platform

without additional installation steps.

https://pytorch.org/

https://github.com/apache/incubator-mxnet
https://pytorch.org/

Scale AI workloads with Intel
optimizations

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Feature Parity
with Caffe* and

Torch*

Lower TCO and
improved ease of
use with existing

infrastructure

Deep Learning on
Big Data Platform,
Enabling Efficient

Scale-Out

software.intel.com/bigdl
https://software.intel.com/en-us/articles/bigdl-distributed-deep-

learning-on-apache-spark

Designed for Spark* or Apache* Hadoop*
clusters running on Intel® Xeon® processors!

1Open-source software is available for download at no cost; ‘free’ is also contingent upon running on existing idle CPU infrastructure where the operating cost is treated as a ‘sunk’ cost

Scale AI workloads: bigdl

High Performance Deep Learning for FREE on CPU Infrastructure1

Optimization Notice

Rich deep learning support

Extremely high performance.

https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://software.intel.com/en-us/articles/optimization-notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands
may be claimed as the property of others. Copyright © 2018, Intel Corporation.

Distributed
Tensorflow with

Parameter Server

Uber’s open source Distributed
training framework for TensorFlow

Source: https://eng.uber.com/horovod/

No
Parameter

Server

With
Parameter

Server

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

The ring all-reduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

Scale AI workloads: Horovod

Intel optimized AI frameworks
support Horovod seemlessly

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SCALE AI: Intel® machine learning scaling library (mlsl)

https://github.com/intel/MLSL
https://usermanual.wiki/Document/DeveloperGuide.95427288.pdf

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

2nd generation INTEL® XEON® SCALABLE PROCESSOR Cascade Lake

PerformanceTCO/Flexibility SecUrity
Built-in Acceleration with

Intel® Deep Learning Boost…

 IMT – Intel® Infrastructure
Management Technologies

 ADQ – Application Device Queues

 SST – Intel® Speed Select Technology

 Intel® Security Essentials

 Intel® SecL: Intel® Security
Libraries for Data Center

 TDT – Intel® Threat Detection
TechnologyThroughput (img/s)

Drop-in compatible CPU on Intel® Xeon® Scalable platform

formerly known as

Begin your AI journey efficiently,
now with even more agility…

Hardware-Enhanced
Security…

deep
learning
throughput!1

Up to

30X

1 Based on Intel internal testing: 1X,5.7x,14x and 30x performance improvement based on Intel® Optimization for Café ResNet-50 inference throughput performance on Intel® Xeon® Scalable Processor. See Configuration Details 3
Performance results are based on testing as of 7/11/2017(1x) ,11/8/2018 (5.7x), 2/20/2019 (14x) and 2/26/2019 (30x) and may not reflect all publically available security updates. No product can be absolutely secure. See configuration
disclosure for details. ,
Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance

http://www.intel.com/performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Deep Learning Boost (DL Boost)

NEW

INT8 07 06 05 04 03 02 01 00

Sign Mantissa

featuring Vector Neural Network Instructions (VNNI)

1. Fused multiply-add instruction

2. MKLDNN is optimized for VNNI

Speeds-up image classification, speech recognition, language
translation, object detection and more

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1 5.7x inference throughput improvement with Intel® Optimizations for Caffe ResNet-50 on Intel® Xeon® Platinum 8180 Processor in Feb 2019 compared to performance at launch in July 2017. See configuration details on Config 1
Performance results are based on testing as of dates shown in configuration and may not reflect all publicly available security updates.
28/24/2018) Results have been estimated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect
your actual performance. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. No product can be absolutely secure. See configuration disclosure for details. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved
for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any
of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit: http://www.intel.com/performance

Baseline

50x

285x

2S Intel® Xeon® Scalable Processor (Skylake)
July 2017 July 2017 Skylake launch February 2019

vs. Baseline vs. Baseline

Deep learning performance on CPU

I

N

T

8

V

N

N

I

Resnet-50 1.9x2

Inception v3 1.8x2

SSD-VGG16 2.0x2

C
a

ff
e

Resnet-50 1.9x2

Inception v3 1.8x2

T
e

n
so

rF
lo

w

SKYLAKE
CASCADE

LAKE

Hardware + Software Improvements for Intel® Xeon® Processors

http://www.intel.com/performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Please refer to : https://intel.github.io/mkl-
dnn/perf_profile.html

• $export MKLDNN_JIT_DUMP=1

• $./build/simple_net_int8_cpp

• $ objdump -D -b binary -mi386:x86-64
mkldnn_dump__jit_avx512_core_x8s8s32x_conv_fwd_
ker_t.2.bin | grep vpdpbusd

• The sample output with VNNI instruction sets

VNNI usage verification by dumping JIT kernel

https://intel.github.io/mkl-dnn/perf_profile.html

Performance SuMMARY

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Training Performance on AWS C5 instance

System configuration and hardware specs at:

https://aws.amazon.com/blogs/machine-learning/

faster-training-with-optimized-tensorflow-1-6-

on-amazon-ec2-c5-and-p3-instances/

From the blog post

“Training a ResNet-50 benchmark
with synthetic ImageNet dataset using
our optimized build of TensorFlow 1.6
on a c5.18xlarge instance type was
7.4X faster than training on the stock
TensorFlow 1.6 binaries”

- Sumit Thakur, AWS

AWS Machine Learning Blog: Faster training with optimized TensorFlow 1.6 on Amazon EC2 C5 and P3 instances
<https://aws.amazon.com/blogs/machine-learning/faster-training-with-optimized-tensorflow-1-6-on-amazon-ec2-c5-and-p3-instances/>

Data collected from AWS Machine learning blog

Now intel-optimized TensorFlow 1.13 is
available on AWS DLAMI and 9.5x faster

https://aws.amazon.com/blogs/machine-
learning/aws-deep-learning-amis-now-come-with-
tensorflow-1-13-mxnet-1-4-and-support-amazon-

linux-2/

https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

TF Scaling Efficiency w/ horovod

Up to 94% of scaling w/ 2 MPI process

Up to 89 percent (ResNet-
50*) of scaling efficiency w/
1 MPI Process

InceptionResNet-v2 was able to maintain at least 80 percent
scalability for up to 32 nodes w/ 1 MPI Process/node

https://www.intel.ai/multi-node-convergence-and-scaling-of-inception-resnet-v2-model-using-intel-xeon-processors/#gs.b1r0xv
https://software.intel.com/en-us/articles/using-intel-xeon-processors-for-multi-node-scaling-of-tensorflow-with-horovod

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

Inference Throughput Performance
CPU optimized TensorFlow compared with unoptimized (stock) TensorFlow

For More Details: https://www.anaconda.com/tensorflow-cpu-optimizations-in-anaconda/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

Intel AI OOB Tools for Cascade Lake

INTEL MODEL ZOO
1. Demonstrate the AI workloads and deep
learning models (fp32 and int8) Intel has
optimized and validated to run on Intel hardware

2. Deliver E2E inference solution at scale on
selective use cases

(Data, AI model) model zoo inference script inference results

3. Make it easy to benchmark model
performance on Intel hardware both in the cloud
or baremetal

INTEL QUANTIZATION TOOLS
(int8 inference)

1. Post-training model optimization+ quantization process on
Intel® Xeon processors

2. Reduced model size resulting in FASTER inference utilizing
VNNI instructions, while maintaining accuracy

FP32 model

Quantized model INT8 Model

MKL DNN Primitive

INT8

INT8
FP32

Scale
Low Precision Inference

https://github.com/IntelAI/models https://github.com/IntelAI/tools
https://github.com/intel/Detectron

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

© 2019 Intel Corporation

PretrAINED models pubhlished on top toplogies

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Article Plug
Intel–Optimized TensorFlow* Performance Considerations

https://software.intel.com/en-us/articles/maximize-
tensorflow-performance-on-cpu-considerations-and-
recommendations-for-inference

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Free Support: Intel® AI Frameworks Forum

https://forums.intel.com

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

More information at

www.intel.ai/framework-optimizations/

Call to Action

LEARN

EXPLORE

ENGAGE

Use Intel’s performance-

optimized libraries & frameworks

Use Our Free Support: forums.intel.com

Choose “Intel Optimized AI Frameworks” from

list

https://ai.intel.com/framework-optimizations/
https://ai.intel.com/framework-optimizations/

