# **INTEL® PERFORMANCE LIBRARIES**

## Fast, Scalable Code with Intel<sup>®</sup> Math Kernel Library (Intel<sup>®</sup> MKL)

- Speeds computations for scientific, engineering, financial and machine learning applications by providing highly optimized, threaded, and vectorized math functions
- Provides key functionality for dense and sparse linear algebra (BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics, deep learning, splines and more
- Dispatches optimized code for each processor automatically without the need to branch code
- Optimized for single core vectorization and cache utilization
- Automatic parallelism for multi-core and many-core
- Scales from core to clusters
- Available at no cost and royalty free
- Great performance with minimal effort!





#### **Optimization Notice**



## Automatic Dispatching to Tuned ISA-specific Code Paths

More cores  $\rightarrow$  More Threads  $\rightarrow$  Wider vectors

|               |                                                                |                                          |                                          |                                                                  |                                                   |                                                                | Intel' Xeon'<br>Processor<br>Scalable Family<br>With How And Trade         |                                                   |
|---------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|
|               | Intel <sup>®</sup><br>Xeon <sup>®</sup><br>Processor<br>64-bit | Intel° Xeon°<br>Processor<br>5100 series | Intel° Xeon°<br>Processor<br>5500 series | Intel <sup>®</sup> Xeon <sup>®</sup><br>Processor<br>5600 series | Intel° Xeon°<br>Processor<br>E5-2600 v2<br>series | Intel° Xeon°<br>Processor<br>E5-2600 v3<br>series<br>v4 series | Intel <sup>®</sup> Xeon <sup>®</sup><br>Scalable<br>Processor <sup>1</sup> | Intel <sup>®</sup> Xeon P<br>x200 Proces<br>(KNL) |
| Up to Core(s) | 1                                                              | 2                                        | 4                                        | 6                                                                | 12                                                | 18-22                                                          | 28                                                                         | 72                                                |
| Up to Threads | 2                                                              | 2                                        | 8                                        | 12                                                               | 24                                                | 36-44                                                          | 56                                                                         | 288                                               |
| SIMD Width    | 128                                                            | 128                                      | 128                                      | 128                                                              | 256                                               | 256                                                            | 512                                                                        | 512                                               |
| Vector ISA    | Intel®<br>SSE3                                                 | Intel <sup>®</sup> SSE3                  | Intel®<br>SSE4- 4.1                      | Intel® SSE<br>4.2                                                | Intel® AVX                                        | Intel®<br>AVX2                                                 | Intel®<br>AVX-512                                                          | Intel®<br>AVX-512                                 |

1. Product specification for launched and shipped products available on ark.intel.com.

Optimization Notice

# What's New in Intel<sup>®</sup> Math Kernel Library 2019?

### Just-In-Time Fast Small Matrix Multiplication

Improved speed of S/DGEMM for Intel® AVX2 and Intel® AVX-512 with JIT capabilities

## Sparse QR Solvers

 Solve sparse linear systems, sparse linear least squares problems, eigenvalue problems, rank and null-space determination, and others

## Generate Random Numbers for Multinomial Experiments

 Highly optimized multinomial random number generator for finance, geological and biological applications



# What's Inside Intel® Math Kernel Library



#### **Optimization Notice**

Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others. <sup>1</sup>Available only in Intel<sup>®</sup> Parallel Studio Composer Edition.

## DGEMM, SGEMM Optimized by Intel® Math Kernel Library on Intel® Xeon® Processor

DGEMM on Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8180 Processor 2.50GHz



Performance results are based on testing as of July 9, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>. Testing by Intel as of July 9, 2018. **Configuration:** Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8180 H0 205W 2x28@2.5GHz 192GB DDR4-2666

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocets reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information about compiler optimizations, see our <u>Optimization Notice</u>. Notice revision #20110804. For more complete information about compiler optimizations, see our <u>Optimization Notice</u>.

#### **Optimization Notice**

Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.



SGEMM on Intel<sup>®</sup> Xeon<sup>®</sup> Platinum 8180 Processor

2.50 GHz

# Speed Imaging, Vision, Signal, Security & Storage Apps with Intel<sup>®</sup> Integrated Performance Primitives (Intel<sup>®</sup> IPP)

## Accelerate Image, Signal, Data Processing & Cryptography Computation Tasks

- Multi-core, multi-OS and multi-platform ready, computationally intensive & highly optimized functions
- Use high performance, easy-to-use, production-ready APIs to quickly improve application performance
- Reduce cost & time-to-market on software development & maintenance

### What's New in 2019 Release

- Functions for ZFP floating-point data compression to help tackle large data storage challenges, great for oil/gas applications
- Optimization patch files for the bzip2 source 1.0.6
- Improved LZ4 compression & decompression performance on high entropy data
- New color conversion functions for convert RBG images to CIE Lab color models, & vice versa
- Extended optimization for <u>Intel<sup>®</sup> AVX-512</u> & <u>Intel<sup>®</sup> AVX2</u> instruction set
- Open source distribution of Intel<sup>®</sup> IPP Cryptography Library

#### Learn More: software.intel.com/intel-ipp



## Intel<sup>®</sup> IPP Your Building Blocks for Image, Signal & Data **Processing Applications**

#### What is Intel<sup>®</sup> IPP?

Intel IPP provides developers with readyto-use, processor- optimized functions to accelerate Image & Signal processing, Data Compression & Cryptography computation tasks

#### Why should you use Intel<sup>®</sup> IPP?

- **High Performance**
- Easy to use API's .
- Faster Time To Market (TTM) .
- **Production Ready** .
- **Cross-platform API**

#### How to get Intel<sup>®</sup> IPP?

- Intel Parallel Studio XE .
- **Intel System Studio** ٠
- Free Tools Program

#### **Optimized for**





# Addresses

Data Center Internet of Things Embedded Systems Cloud Computing

#### Image Processing Uses

- Medical Imaging
- Automated Sorting Computer Vision Biometric •
- Digital Surveillance
  - Identification
- Visual Search

#### Signal Processing Uses

- Games (sophisticated audio content or effects)
- Echo cancellation
- Telecommunications
- Energy

ADAS

#### Data Compression & Cryptography Uses

- Data centers
- Enterprise data management
- ID verification
- Smart Cards/wallets
- **Electronic Signature**
- Information security/cybersecurity •

#### **Optimization Notice**

Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others. Find out more at: http://software.intel.com/intel-ipp

Contact us through our forum: http://software.intel.com/en-us/forums/intel-integrated-performance-primitives



# What's Inside Intel<sup>®</sup> Integrated Performance Primitives

High Performance, Easy-to-Use & Production Ready APIs



#### **Optimization Notice**

Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others. <sup>1</sup>Available only in Intel<sup>®</sup> Parallel Studio Composer Edition.



## Performance Improvement for Data Compression

#### Data Compression Performance Ratio, Intel<sup>®</sup> Integrated Performance Primitives 2019 vs LZ4, Zlib, LZO Libraries



Performance results are based on testing as of Aug. 15, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>. Testing by Intel as of August 15, 2018. Configuration: Intel<sup>®</sup> Core<sup>™</sup> i5-7600 CPU @3.50GHz, 4 cores, hyper-threading off; Cache: L1=32KB, L2=256KB, L3=6MB; Memory: 64GB; OS: RH EL Server 7.2 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors. Please refer to the applicable product User and Reference Guides for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>. For more complete information about compiler optimizations, see our <u>Optimizations Notice</u>.

#### **Optimization Notice**

## Performance Improvement for Data Decompression

#### Data Decompression Performance Ratio, Intel<sup>®</sup> Integrated Performance Primitives 2019 vs LZ4, Zlib, LZO Libraries



Original Library Intel<sup>®</sup> IPP 2019

Performance results are based on testing as of Aug. 15, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>. Testing by Intel as of Aug. 15, 2018. Configuration: Intel® Core™ i5-7600 CPU @3.50GHz, 4 cores, hyper-threading off; Cache: L1=32KB, L2=256KB, L3=6MB; Memory: 64GB; OS: RH EL Server 7.2

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>.

For more complete information about compiler optimizations, see our Optimization Notice.

#### **Optimization Notice**



# Get the Benefits of Advanced Threading with Threading Building Blocks

# Use Threading to Leverage Multicore Performance & Heterogeneous Computing

- Parallelize computationally intensive work across CPUs, GPUs & FPGAs,—deliver higher-level & simpler solutions using C++
- Most feature-rich & comprehensive solution for parallel programming
- Highly portable, composable, affordable, approachable, future-proof scalability

#### What's New in 2019 Release

- New capabilities in Flow Graph improve concurrency & heterogeneity through improved task analyzer & OpenCL\* device selection
- New templates to optimize C++11 multidimensional arrays
- C++17 Parallel STL, OpenCL\*, & Python\* Conda language support
- Expanded Windows\*, Linux\*, Android\*, MacOS\* support



#### Learn More: software.intel.com/intel-tbb



# What's Inside Threading Building Blocks



#### Optimization Notice

# Heterogeneous Support

Threading Building Blocks (TBB)

TBB flow graph as a coordination layer for heterogeneity—retains optimization opportunities & composes with existing models



CPUs, integrated GPUs, etc.

Threading Building Blocks OpenVX\* OpenCL\* COI/SCIF ....

TBB as a composability layer for library implementations

• One threading engine *underneath* all CPU-side work

#### TBB flow graph as a coordination layer

- Be the glue that connects heterogeneous hardware & software together
- Expose parallelism between blocks—simplify integration



#### **Optimization Notice**

# Excellent Performance Scalability with Threading Building Blocks on Intel<sup>®</sup> Xeon<sup>®</sup> Processor



Performance results are based on testing as of July 31, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.Configuration: Testing by Intel as of July 31, 2018. Software versions: Intel® 64 Compiler, Version 18.0, Threading Building Blocks (TBB) 2019; Hardware: 2x Intel® Xeon® Gold 6152 CPU @ 2.10GHz, 192GB Main Memory; Operating System: CentOS Linux\* release 7.4 1708 (Core), kernel 3.10.0-693.e17.x86 64; Note: sudoku, primes and tachyon are included with TBB.

#### **Optimization Notice**

Copyright © 2018. Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference, Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>. For more complete information about compiler optimizations, see our



# Speedup Analytics & Machine Learning with Intel<sup>®</sup> Data Analytics Acceleration Library (Intel<sup>®</sup> DAAL)

- Highly tuned functions for classical machine learning & analytics performance from datacenter to edge running on Intel<sup>®</sup> processor-based devices
- Simultaneously ingests data & computes results for highest throughput performance
- Supports batch, streaming & distributed usage models to meet a range of application needs
- Includes Python\*, C++, Java\* APIs, & connectors to popular data sources including Spark\* & Hadoop

### What's New in the 2019 Release

#### **New Algorithms**

- Logistic Regression, most widely-used classification algorithm
- Extended Gradient Boosting Functionality for inexact split calculations & user-defined callback canceling for greater flexibility
- User-defined Data Modification Procedure supports a wide range of feature extraction & transformation techniques



#### Learn More: software.intel.com/daal

# Algorithms, Data Transformation & Analysis

## Intel® Data Analytics Acceleration Library



Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

#### **Optimization Notice**



## Intel® Data Analytics Acceleration Library 2019 Speedup vs XGBoost\*



#### XGBoost Open Source Project

Performance results are based on testing as of **July 9, 2018** and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information, see <u>Performance Benchmark Test Disclosure</u>. Testing by Intel as of July 9, 2018. Configuration: Intel® Xeon® Platinum 8180 H0 205W, 2x28@2.50GHz, 192GB, 12x16gb DDR4-2666, Intel® Data Analytics Acceleration Library (Intel® DAAL 2019), RHEL 7.2 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. <u>Notice revision #20110804</u>. For more complete information about compiler optimizations, see our <u>Optimization Notice</u>.

#### **Optimization Notice**



## Intel<sup>®</sup> MKL BLAS (Basic Linear Algebra Subprograms)

| De-facto Standard APIs since the 1980s    |                                                                                                                                                              |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 100s of Basic Linear<br>Algebra Functions | Level 1 – vector vector operations, O(N)<br>Level 2 – matrix vector operations, O(N <sup>2</sup> )<br>Level 3 – matrix matrix operations, O(N <sup>3</sup> ) |  |
| Precisions Available                      | Real – Single and Double<br>Complex - Single and Double                                                                                                      |  |
| BLAS-like Extensions                      | Direct Call, Batched, Packed and Compact                                                                                                                     |  |
| Reference<br>Implementation               | http://netlib.org/blas/                                                                                                                                      |  |



# Intel<sup>®</sup> MKL LAPACK (Linear Algebra PACKage)

## De-facto Standard APIs since the 1990s

| 1000s of Linear<br>Algebra Functions | Matrix factorizations - LU, Cholesky, QR<br>Solving systems of linear equations<br>Condition number estimates<br>Symmetric and non-symmetric eigenvalue problems<br>Singular value decomposition<br>and many more |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precisions Available                 | Real – Single and Double,                                                                                                                                                                                         |
|                                      | Complex – Single and Double                                                                                                                                                                                       |
| Reference<br>Implementation          | http://netlib.org/lapack/                                                                                                                                                                                         |

Optimization Notice

# Intel<sup>®</sup> MKL Fast Fourier Transforms (FFTs)

| FFTW Interfaces support | C, C++ and FORTRAN source code wrappers provided for FFTW2 and FFTW3. FFTW3 wrappers are already built into the library                           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Cluster FFT             | Perform Fast Fourier Transforms on a cluster<br>Interface similar to DFTI<br>Multiple MPIs supported                                              |
| Parallelization         | Thread safe with automatic thread selection                                                                                                       |
| Storage Formats         | Multiple storage formats such as CCS, PACK and Perm supported                                                                                     |
| Batch support           | Perform multiple transforms in a single call                                                                                                      |
| Additional<br>Features  | Perform FFTs on partial images<br>Padding added for better performance<br>Transform combined with transposition<br>mixed-language usage supported |
| Optimization Notice     |                                                                                                                                                   |

Copyright © 2018, Intel Corporation. All rights reserved. \*Other names and brands may be claimed as the property of others.



ínte

# Intel<sup>®</sup> MKL Vector Math

| Example:                  | $y(i) = e^{x(i)} \text{ for } i = 1 \text{ to } n$                                                                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Broad Function<br>Support | Basic Operations – add, sub, mult, div, sqrt<br>Trigonometric– sin, cos, tan, asin, acos, atan<br>Exponential – exp,, pow, log, log10, log2,<br>Hyperbolic – sinh, cosh, tanh<br>Rounding – ceil, floor, round<br>And many more |
| Precisions Available      | Real – Single and Double<br>Complex - Single and Double                                                                                                                                                                         |
| Accuracy Modes            | High - almost correctly rounded<br>Low - last 2 bits in error<br>Enhanced Performance - 1/2 the bits correct                                                                                                                    |

**Optimization Notice** 

# Intel<sup>®</sup> MKL Sparse Solvers

| PARDISO - Parallel                    | Factor and solve $Ax = b$ using a parallel shared memory $LU$ , $LDL$ , or $LL^T$ factorization                                                                                                                                 |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direct Sparse                         | Supports a wide variety of matrix types including real, complex, symmetric, indefinite,                                                                                                                                         |
| Solver                                | Includes out-of-core support for very large matrix sizes                                                                                                                                                                        |
| Parallel Direct                       | Factor and solve Ax = b using a parallel distributed memory LU, LDL, or $LL^{T}$ factorization                                                                                                                                  |
| Sparse Solver                         | Supports a wide variety of matrix types (real, complex, symmetric, indefinite, )                                                                                                                                                |
| for Clusters                          | Supports A stored in 3-array CSR3 or BCSR3 formats                                                                                                                                                                              |
| DSS – Simplified<br>PARDISO Interface | An alternative, simplified interface to PARDISO                                                                                                                                                                                 |
| ISS – Iterative<br>Sparse Solvers     | Conjugate Gradient (CG) solver for symmetric positive definite systems<br>Generalized Minimal Residual (GMRes) for non-symmetric indefinite systems<br>Rely on Reverse Communication Interface (RCI) for matrix vector multiply |



