Practical applications of hybrid variational-ensemble data assimilation approaches

Craig Schwartz
(schwartz@ucar.edu)

NCAR/MMM

August 4, 2015
What is data assimilation?

- **“Observation operator”** Produces model-simulated observations
- Real observations
- Observation errors
- **Gridded model forecast**... the “background” or “first guess”
- Background error covariances (errors of the background)
- **Data assimilation algorithm**
- Statistically-optimal gridded “analysis”
A few data assimilation approaches

• Three-dimensional variational (3DVAR)
 – Background error covariances (BECs) typically fixed/time-invariant
 – May yield poor results when actual flow differs from that encapsulated within the fixed “climatology”
 – Produces a deterministic analysis

• Ensemble Kalman filter (EnKF)
 – Time-evolving, “flow-dependent” BECs estimated from short-term ensemble forecasts
 – Produces an ensemble analysis
A few data assimilation approaches

• “Hybrid” variational/ensemble
 – Incorporates ensemble background errors within a variational (e.g., 3DVAR) framework
 – Combination of fixed and time-evolving BECs
 – Traditionally produces a deterministic analysis like (3DVAR)
Optionally recenter the EnKF analysis ensemble about hybrid analysis
Dual-resolution hybrid DA with a focus on limited-area applications
Dual-resolution hybrid DA

• The hybrid method has repeatedly been shown to initialize better forecasts than 3DVAR
 – Also usually comparable to or better than pure EnKFs

• Compared to 3DVAR, the primary expense of the hybrid is the ensemble of forecasts
 – Similar expense as pure EnKF
Goal of dual-resolution hybrid DA

• We wish to perform high-resolution (HR) hybrid analyses using ensemble perturbations from a low-resolution (LR) ensemble
 – The ensemble *perturbations* provide flow-dependent BECs

• This approach considerably reduces computational expense since producing HR ensemble forecasts is unnecessary
 – The analyses are also faster

• Called “dual-resolution” (DR) hybrid DA
Both ensemble and deterministic “circuits” have identical resolutions.
Dual-resolution hybrid DA

Low-resolution ensemble “circuit”

LR ensemble mem 1 background
LR ensemble mem 2 background
LR EnKF
LR ensemble mem 1 analysis
LR ensemble mem 2 analysis
LR forecast model
LR forecast model

Static BECs
LR Ensemble BECs

High-resolution deterministic “circuit”

HR hybrid background
HR Hybrid
HR hybrid analysis
HR forecast model
HR forecast model
Dual-resolution hybrid DA

• Practical aspect: Saving computational resources

• Scientific question: Does resolution of the ensemble perturbations matter?

• To examine these questions, several DA experiments were performed (Schwartz et al. 2015; MWR)
Experiments assessing utility of DR hybrid

• Produced 45- and 15-km analyses, but focus is on 15-km

• Four continuously-cycling experiments:
 1) Single-resolution (SR) hybrid analyses at 15-km grid length: a 15-\textit{km} ensemble was required
 2) Dual-resolution (DR) hybrid analyses at 15-km grid length: a 45-\textit{km} ensemble was required
 3) Same as #2, but with EnKF re-centering
 4) Pure 3DVAR analyses at 15-km grid length (control run)
Some model configurations

- Version 3.3.1 of the WRF-ARW model
- 45 vertical levels, 30 hPa top
- Lateral boundary conditions from GFS forecasts
- Full suite of physical parameterizations
Nested WRF model configuration

- For DR analyses, produce an analysis on do2 (15-km) using ensemble BECs from do1 (45-km)
More settings

• An EnKF updated a 32-member WRF ensemble
 – Ran both 45- and 15-km cycling EnKF systems
 – 15-km ensembles provided input to 15-km *single-resolution* hybrid analyses
 – 45-km ensembles provided input to 15-km *dual-resolution* hybrid analyses

• Cyclic data assimilation (6-hr period) from 4-28 September 2008

• 72-hr nested WRF model forecasts initialized from hybrid and 3DVAR analyses beginning 1800 UTC 8 September—*focus on the 15-km forecasts*
EnKF assimilation parameters

• The Data Assimilation Research Testbed (DART)
 – Ensemble Adjustment Kalman Filter (EAKF)
 – 32 ensemble members
 – Horizontal localization cutoff: ~1280-km from observations
 – Vertical localization cutoff: ~10-km from observations
 – Prior adaptive inflation

• Stochastic kinetic-energy backscatter scheme within WRF was used during model advances
 – Helped with ensemble spread

• Perturbed lateral boundary conditions for ensemble of model advances
Hybrid assimilation parameters

- Used the WRFDA hybrid system
- 75% ensemble, 25% climatological contributions to total BECs
- Horizontal localization: Similar as EnKF
- Vertical localization: Length-scale increased with height
- Same inflation as in DART applied to the prior perturbations before they were ingested into the hybrid
Experimental flow-chart for the single-resolution system

Fig. 2. Flow-chart describing a cycling EAKF and single-resolution hybrid system where separate, independent 45- and 15-km EAKF and hybrid analyses are performed.
Experimental flow-chart for the dual-resolution system with EnKF re-centering
Observation coverage

• Snapshot of available observations

Fig. 2. Computational domain overlaid with observations available for assimilation during the 0000 UTC 13 September analysis. The inner box represents the bounds of the 15-km domain, which is nested within the 45-km domain.
Single observation experiment

• Temperature observation (innovation -2K, ob. error 1K) placed in center of typhoon Sinlaku
Single observation experiment

- Temperature observation (innovation -2K, ob. error 1K) placed in center of typhoon

- Potential temperature increments and spread
Single observation experiment

- Temperature observation (innovation -2K, ob. error 1K) placed in center of typhoon

- Mixing ratio increments and spread
Single observation experiment

- Temperature observation (innovation -2K, ob. error 1K) placed in westerly flow

- Potential temperature increments and spread
Ensemble spreads

- Average prior ensemble spreads (over 15-km domain)
- Averaged between 1800 UTC 8 September and 0000 UTC 28 September
- After prior inflation

![Graphs showing ensemble spreads for different variables](image-url)
Ensemble spread/skill

- How did the EAKF perform?
- Consistency ratios (CRs) averaged between 1800 UTC 8 September and 0000 UTC 28 September
- After prior inflation

\[
CR = \frac{\text{Total spread}}{\text{RMSE}}
\]
Mean analysis increments

- Increments averaged between 1800 UTC 8 and 0000 UTC 28 September
- Which row is DR and which one is SR?
 – Can you tell the difference?
Typhoon track forecasts

- Verified 15-km forecasts against tracks of 3 typhoons
Typhoon track forecasts

- Verified 15-km forecasts against tracks of 3 typhoons
Verification against radiosondes

- 24-hr forecasts
- Aggregated over 78 forecasts initialized between 1800 UTC 8 and 0000 UTC 28 September
Toward higher-resolution analyses
Background

• Convection-allowing forecasts have traditionally been initialized from convection-parameterizing analyses
 – These forecasts have been good, but there are spin-up issues

• This work produces convection-allowing analyses over a large (e.g., 3000 km2) domain
 – Many case studies have examined convection-allowing data assimilation over small domains
The challenge

• Ultimately, we want to produce analyses at convection-permitting resolution using flow-dependent BECs derived from ensembles

• But, for DA purposes, computational constraints currently do not permit high-resolution ensembles over domains large enough to resolve synoptic scale features
 – This will change fairly soon
Practical approach

• However, we can combine high-resolution deterministic backgrounds with low-resolution ensembles in a DR hybrid approach
 – Does not solve the issue of high-resolution ensembles
 – Permits high-resolution within ensemble DA systems

• Not clear how mixing a convection-allowing background with a convection-parameterizing ensemble will work
DA experiments

• Full-cycling (6-hr period) between May 4 – June 30, 2013

• Five DA experiments (analyses every 6-hrs):
 • Pure EnKF (“EnKF”) : 20-km cycling
 • Pure 3DVAR (“3DVAR 20-km”) : 20-km cycling
 • Pure 3DVAR (“3DVAR 4-km”) : 4-km cycling
 • SR Hybrid (“Hybrid 20-km”) : 20-km cycling
 • DR Hybrid (“Hybrid 4-km”) : 4-km cycling

• Hybrid runs coupled to a 20-km, 50-member EnKF

• All assimilated identical conventional observations
Selected data assimilation settings

• 50 ensemble members in hybrid/EnKF

• Hybrid: 75% of background errors from ensemble, 25% from the static contribution

• Used posterior inflation for EnKF and localization in EnKF and hybrid
Precipitation verification domain

Computational domain

20-km (300 x 200)

4-km (801 x 616)
Computational domain

20-km (300 x 200)

4-km (801 x 616)

Precipitation verification domain

20-km ensemble covariances over orange region used for 4-km DR analyses
Low-resolution (20-km)

- 20-km ens mem 1 background
- 20-km ens mem 2 background

High-resolution (4-km)

- 4-km hybrid background

EnKF

- 20-km forecast model
- 20-km ens mem 1 analysis
- 20-km ens mem 2 analysis

Hybrid DA

- 20-km ensemble BECs
- 4-km hybrid forecast model
- 4-km hybrid analysis

Static BECs
Forecast initialization

• 0000 UTC analyses initialized 36-hr 4-km WRF forecasts

• 4-km initial conditions were *downscaled 20-km analyses* in the 20-km 3DVAR, EnKF, and SR hybrid experiments

• *True 4-km analyses* initialized 4-km forecasts in the DR hybrid and 4-km 3DVAR experiments

• Forecast differences between SR and DR hybrid experiments due to analysis resolution

• **Control**: Interpolate 0000 UTC GFS analyses directly onto the domain and run forecasts
Precipitation verification

• Focus on 4-km hourly precipitation forecasts

• NCEP Stage IV observations as “truth”

• All precipitation statistics aggregated over 55 4-km forecasts

• Fractions skill score (FSS) quantifies displacement errors
Fractions skill score (FSS)

- A neighborhood approach to verification, which is needed to verify high-resolution forecasts

- Directly compare observed and forecast fractions to compute the FSS

\[f_i = 8/21 \quad \text{and} \quad o_i = 8/21 \]
Precipitation verification: the first 12-hrs

- Fractions skill score (FSS) aggregated over the first 12 forecast hours and 55 4-km forecasts
Precipitation verification: the first 12-hrs

• Fractions skill score (FSS) aggregated over the first 12 forecast hours and 55 4-km forecasts
Precipitation verification: 18-36-hrs

- Fractions skill score (FSS) aggregated over forecast hours 18-36 and 55 4-km forecasts
Areal coverages of precipitation

- Aggregate fractional coverage of precipitation exceeding certain thresholds aggregated over all 55 forecasts.
Introduction to integrated variational/ensemble DA approaches
EVIL DA

- EVIL stands for “Ensemble variational integrated localized”
- Developed by Tom Auligne (NCAR)
- Simultaneously updates both an ensemble and deterministic background
- Uses properties of the variational minimization to produce the analysis ensemble
Summary

• The hybrid method is a practical way of incorporating ensemble BECs into DA systems

• Dual-resolution method is also a highly practical tool
 – Still not completely clear how much is lost through use of coarse-resolution ensemble

• Integrated variational/ensemble methods (e.g., EVIL) are “hot” research topics