Using Probabilistic Machine Learning to Estimate Ocean Mixed Layer Depth

Recovery from sparse in-situ observations informed from satellite data.

Dallas Foster
Oregon State University
Advisors: David John Gagne, Daniel Whitt

July 29th 2020
Ocean and Earth system processes are highly sensitive to ocean surface mixed layer depth (MLD)
- water mass formation and circulation
- air-sea exchange
- Biogeochemistry

Observational data is increasingly available, but still relatively sparse

Existing methods perform optimal interpolation, but do not inform with satellite sea surface data.

Want to quantify the sub-seasonal relationship between Sea Surface Salinity (SSS), Temperature (SST), Sea Level Height Anomaly (SSH) and MLD

https://www.gfdl.noaa.gov/oceanprocschem/
GOALS AND QUESTIONS

- Compare different ML approaches
- Quantify the uncertainty of MLD estimates
- Produce maps of the MLD as a function of SSS, SST, SSH
- On what spatio-temporal scales can we estimate the MLD reliably?
- What features are not being resolved in the analysis?
- How valuable are the various input data for estimating the MLD?
Argo float MLD data is:
- Sparse
- Non-normal
Preprocessing Steps:

1. **Divide Data**
 - Validate divisions

2. **Calculate Climatology**
 - Apply rolling average
 - Bin data into months
 - Average over bins

3. **Calculate Anomalies**
 - Bin data into months
 - Subtract binned climatology
 - Remove diurnal cycle

4. **Resample**
5. **Interpolate**
<table>
<thead>
<tr>
<th>Terminology</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
<td>A framework of building and fitting nonlinear models to data.</td>
</tr>
<tr>
<td>Uncertainty Quantification</td>
<td>Techniques to determine how likely certain outcomes are if some aspects of the system are not exactly known.</td>
</tr>
<tr>
<td>S, T, H, x, y</td>
<td>Variables SST, SSH, SHA and the 2-dimensional spatial coordinates.</td>
</tr>
<tr>
<td>$d_{obs}, d, \sigma, \Sigma$</td>
<td>MLD observations (sparse grid), estimates, uncertainties (full grid).</td>
</tr>
<tr>
<td>$\theta, p(\theta)$</td>
<td>Model parameters and probability distribution (prior distribution).</td>
</tr>
<tr>
<td>$p(d_{obs}</td>
<td>d, \theta)$</td>
</tr>
</tbody>
</table>
Aleatoric Uncertainty

- Inherent noise in data
- Irreducible

Model must account for **aleatoric** and **epistemic** uncertainty

- **Monte Carlo** sampling of model
- **Bayesian** interpretation of model weights
- Specification of **noise model**

Epistemic Uncertainty

- Lack of knowledge, data
- Deficiency of model
A Gaussian Process (GP) y, observed at points x is a sample from a multivariate normal distribution,

$$y(x) \sim N(0, K(x, x'))$$

K is a covariance function that specifies the spatial relationships between points.

Allows us to predict the mean and variance of y at new points x_*.
Modeling Steps:
1. Generate dense MLD field
 \[d = f(S, T, H) + \epsilon \]
2. GPR to sparse field
 \[d_{\text{obs}} = L \cdot d + \sigma, \quad \sigma \sim N(0, \Sigma) \]
3. Compute loss and maximize weights according to
 \[p(d|d_{\text{obs}}, \theta) \]
4. Repeat
TRADITIONAL MODELS

LINEAR MODEL

\[d(x, y) = \begin{bmatrix} a(x, y) \\ \beta(x, y) \\ x(y, y) \end{bmatrix} \cdot \begin{bmatrix} S(x, y) \\ T(x, y) \\ H(x, y) \end{bmatrix} + c(x, y) + \varepsilon(x, y) \]

- Little to no spatial correlation between grid points
- Relatively few parameters required
- Trade off between performance and overfitting

FEED FORWARD ARTIFICIAL NEURAL NETWORK

- Universal function approximator
- Comprised of a series of simple nonlinear functions
 \[h_l = f(\Delta h_{l-1} + b) \]
- Weights are updated through backpropagation
- Surplus of parameters
LINEAR MODEL

\[
d(x, y) = \left[\begin{array}{c}
\alpha(x, y) \\
\beta(x, y) \\
\gamma(x, y)
\end{array} \right] \cdot \left[\begin{array}{c}
S(x, y) \\
T(x, y) \\
H(x, y)
\end{array} \right] + c(x, y) + \epsilon(x, y)
\]

- Little to no spatial correlation between grid points
- Relatively few parameters required
- Trade off between performance and overfitting
FEED FORWARD ARTIFICIAL NEURAL NETWORK

- Universal function approximator

- Comprised of a series of simple nonlinear functions
 \[h_i = f(Ah_{i-1} + b) \]

- Surplus of parameters
Parameterization Methods

- Have to make a decision about the output’s distribution
- Simple to implement, when possible
- Examples:
 - Least Squares Regression
 - Variational Neural Networks

Sampling Methods

- Initial distribution must be supplied
- Model must be run many times
- Examples:
 - Dropout
 - Variational AutoEncoders
 - Bayesian Neural Networks
PROBABILISTIC METHODS

VARIATIONAL NEURAL NETWORK
- Requires even more parameters
- Requires parameterization of noise model
- Better captures aleatoric uncertainty.

BAYESIAN NEURAL NETWORK (FLIPOUT)
- Parameterizes a prior noise model for each weight
- Requires double parameters and Monte Carlo sampling
- Can help capture epistemic uncertainty

DROPOUT
- Randomly set some weights to zero
- Creates an ensemble of models
- Computationally inexpensive
- Requires sampling to generate statistics

VARIATIONAL AUTO ENCODERS
- Learns a dimension reduction of input data
- Gaussian noise parameterization
Comparison of MLD Models by Likelihood of Data

Comparison of MLD Models by KS Statistic
ISSUES AND FUTURE WORK

Model Development

• Machine Learning models need further training

• Evaluate different parameterization of VNN, Flipout, VAE models

• Train and evaluate global models

Analysis

• Further estimate spatial resolution and accuracy of models

• Investigate temporal relationships, predictability

• Build framework for optimal assimilation of model and data
• Useful information can be extracted from surface data to estimate ocean mixed layer depths anomalies (MLD).

• Machine learning models are a promising approach to constructing models for estimating MLD.

• Simple noise parameterizations might be all that is necessary to get decent probabilistic estimates.
 – More analysis is needed!
BAYESIAN NEURAL NETWORK (FLIPOUT)

- Parameterizes a prior noise model for each weight
- Requires double parameters and Monte Carlo sampling
- Can help capture epistemic uncertainty

\[S(x, y) \]
\[T(x, y) \]
\[H(x, y) \]
\[w_{i,j} \sim N(\mu_{i,j}, \sigma_{i,j}) \]
VARIATIONAL NEURAL NETWORK

- Requires even more parameters
- Requires parameterization of noise model
- Better captures aleatoric uncertainty.

\[
d(x, y) \sim N(\mu(x, y), \sigma(x, y))
\]
• **Randomly** set some weights to zero

• Creates an **ensemble of models**

• Computationally **inexpensive**

• **Requires sampling** to generate statistics
VARIATIONAL AUTO ENCODERS

- Learns a **dimension reduction** of input data
- Gaussian **noise parameterization**

Encoder Neural Network

Decoder Neural Network

Latent Variables $\sim N(\mu, \sigma)$

Introduction

Data

Modeling

Machine Learning

Uncertainty Quantification

Conclusion