
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Casper Basics for New Users

June 24, 2020

Shiquan Su,
Consulting Services Group

Welcome

Thank you for joining us today.

Here are a few things to note before we really get started:

• The presentation is being recorded and will be available on the
CISL website within the next few days.

• If you have questions, please enter them in the chat. We will
answer all the questions at the end of the talk.

• Please keep your computer audio or phone muted!

Topics to cover:

• Casper hardware: two types of node for
different tasks

• Accessing Casper resources using
Slurm

• Interactive jobs, virtual remote
desktops, ML/DL resources on Casper,
Jupyterhub

• Using the GPU capabilities of Casper

* Did you know Casper is a city in central Wyoming?

Overview of Casper

Hardware

Casper is the latest data analysis and visualization (DAV) platform from CISL

• Provides modern Intel Xeon architecture, large
memory, and OpenGL rendering.

• NVIDIA GPUs for visualization, domain science
model simulation, and machine/deep learning
neural networks.

Two types of Casper nodes enable varied workflows

Data Analysis & Visualization nodes
22 Supermicro 7049GP-TRT SuperWorkstation nodes

• 384GB DDR4-2666 memory

• two 18-core 2.3-GHz Intel Xeon Gold 6140 (Skylake) processors,

• 2 TB local NVMe Solid State Disk

• Mellanox VPI EDR InfiniBand dual-port interconnect

– one port configured for FDR and one as 100 GbE

• Intel 10 Gb dual-port Ethernet

9 nodes equipped with 1 NVIDIA Quadro GP100 GPU on each,

for general graphic usage in data analysis and visualization

13 nodes have no GPU,

best use for handling large memory footprint process

Two types of Casper nodes enable varied workflows

Machine Learning/Deep Learning/Accelerated Scientific
Model Simulation nodes
• 6 Supermicro SuperServer nodes

• 2 18-core 2.3-GHz Intel Xeon Gold 6140 Skylake processors

• 2 TB local NVMe Solid State Disk

• Mellanox VPI EDR InfiniBand dual-port interconnect

– one port configured for FDR and one as 100 GbE

• Intel 10 Gb dual-port Ethernet

2 nodes - 4 NVIDIA Tesla V100 SXM2 GPUs with NVLink (32G device
memory), 772GB DDR4-2666 memory on each, best use Machine Learning /
Deep Learning

4 nodes - 8 NVIDIA Tesla V100 SXM2 GPUs with NVLink (32G device
memory), 1128GB DDR4-2666 memory on each, best use highly parallel
multi-GPU workflows.

device host memory ratio is 1:4, very powerful

General information for all Casper nodes

• Uses existing DAV environment modules, modules are
not shared with Cheyenne! Key module commands:
module list, module avail, module spider, module help,
module show.

• Compile code on the same system you will use to run
(Cheyenne or DAV).

• GLADE, Campaign Storage and HPSS are accessible
from Casper.

• Operating system is CentOS 7.

• Can be accessed through either Cheyenne
(cheyenne.ucar.edu) or Casper (casper.ucar.edu) with
the same user account.

• The two login nodes are: casper26 (with 1 GP100 GPU)
and caser01(no GPU).

NVMe provides high I/O performance node-local storage

• 2 TB solid-state storage per node; some is used to
augment memory - less likely your job will fail due to
excess memory use

• Casper jobs also have access to NVMe storage in:
/local_scratch/$SLURM_JOB_ID

• Data stored here is deleted when job ends!

HPSS and Campaign Storage

• The Campaign Storage file system can be accessed
from the Casper cluster as /glade/campaign.

• Users can read and write data directly from their data
analysis and visualization workflows.

• HPSS is close to the end of the life cycle, currently it
has READ-ONLY access!

• Users can submit batch scripts to migrate data from
HPSS to the Campaign Storage resource.

Accessing Casper

Resources Using

Slurm

All Casper resources are requested via the Slurm scheduler

• Slurm scheduler is set up by default after you login to
Cheyenne, similar to PBS. That means you have assess
to all the Slurm command like PBS command

• You can find the usual Slurm scheduler commands at:
/ncar/opt/slurm/latest/bin

• Walltimes up to 24 hours are allowed on DAV, default is
6 hours.

• We recommend requesting specific resources and/or
features and let Slurm choose an appropriate node.
– Avoid requesting specific nodes!

Handle your jobs in the scheduler

home/shiquan> which sinfo

/ncar/opt/slurm/latest//bin/sinfo

home/shiquan> ls /ncar/opt/slurm/latest//bin

sacct sattach scancel sinfo squeue sshare sview

sacctmgr sbatch scontrol smap sreport sstat

salloc sbcast sdiag sprio srun strigger

home/shiquan> man srun

home/shiquan> which qsub

/opt/pbs/bin/qsub

You can find other useful commands in the similar way:
home/shiquan> which qstat

/glade/u/apps/ch/opt/usr/bin/qstat

home/shiquan> ls /glade/u/apps/ch/opt/usr/bin

… qpeek … crontab … qstat … gladequota qcmd …
duhpss gv qdel showstatus

dumpenv hpss_verify qdh … execdav

licstats qhist test-python-venv

exechpss … qinteractive vncserver_submit

Submit batch jobs to Casper nodes using the sbatch command on Cheyenne

• Bash users:
#!/bin/bash -l

• Example will run on any Casper
node with 1 core and 6 GB
memory available

• It is a best practice that you
set up the temp directory
for your job.

• It is a best practice that you
load your modules inside
the job script before the
executable.

• Run scontrol command to
show job info

$ cat basic_ncl.slurm

#!/bin/tcsh

#SBATCH -J ncljob

#SBATCH -A <project_code>

#SBATCH -o ncljob.log

#SBATCH -p dav

#SBATCH -t 00:10:00

#SBATCH -n 1

#SBATCH --mem=6G

Set temp to scratch

setenv TMPDIR

/glade/scratch/${USER}/temp

mkdir -p $TMPDIR

Run NCL script

module load ncl/6.5.0

ncl process_temps.ncl

Print job info to log

scontrol show job $SLURM_JOB_ID

Place job on specific node type and reserve consumable
resources

#SBATCH -C gpu

• -C is called Feature
constraint, it
specifies nodes must
have this attribute

• Not consumptive
(take it all or not)

• Allows for Boolean
logic with &(and) and
|(or)

#SBATCH --gres=gpu:v100:2

• generic consumable

resource (gres) on each
node

• Resources are exclusive

to the job step (e.g., srun

call)

• You can use part of the
resources on the node

Make sure feature constraints and

resource requests agree!

Casper cluster features and resources

• Available Features:
– casper

– skylake

– mlx5_0

– x11

– gpu, gp100

– v100, 4xv100, 8xv100

• Consumable Resources:
– gpu:gp100:1

– gpu:v100:[1-4]

– gpu:v100:[1-8]

Check all available features

[shiquan@casper25 ~]$ sinfo -o "%15n %40f %15G %e/%m" -p dav -S n

HOSTNAMES AVAIL_FEATURES GRES FREE_MEM/MEMORY

casper01 casper,skylake,mlx5_0 (null) 202197/257000

casper02 casper,skylake,mlx5_0 (null) 296902/385000

casper03 casper,skylake,mlx5_0 (null) 34027/385000

casper04 casper,skylake,mlx5_0 (null) 232464/385000

casper05 casper,skylake,mlx5_0 (null) 327316/385000

casper06 casper,skylake,mlx5_0,gp100,gpu,x11 gpu:gp100:1 138691/385000

…

casper16 casper,skylake,mlx5_0,gp100,gpu,x11 gpu:gp100:1 324970/385000

casper17 casper,skylake,mlx5_0,gp100,gpu,x11 gpu:gp100:1 262229/385000

casper18 casper,skylake,mlx5_0 (null) 234600/385000

…

casper26 casper,skylake,mlx5_0,gp100,gpu,x11 gpu:gp100:1 279554/353000

casper27 casper,skylake,mlx5_0,8xv100,v100,gpu gpu:v100:8 1111433/1158000

casper28 casper,skylake,mlx5_0,8xv100,v100,gpu gpu:v100:8 1110954/1158000

sinfo -o "%15n %40f %15G %e/%m" -p dav -S n

man sinfo

Some useful Slurm commands and parameters

sbatch - Submit a batch script to Slurm.

salloc - Obtain a Slurm job allocation (a set of nodes), execute a
command, and then release the allocation when the command is
finished.

srun - Run parallel jobs

execdav - a shortcut for combination of salloc and srun

sinfo - view information about Slurm nodes and partitions.
(hardware)

squeue - view information about jobs in the Slurm scheduling
queue. (scheduler, software)

scontrol - view and modify Slurm configuration and state,
especially for a particular job, such as "scontrol show job
$SLURM_JOB_ID“

See system man pages for more information on these commands

Running Interactive

and Graphical Jobs,

ML/DL jobs on Casper

CISL provides a script to initiate interactive sessions on
Casper: execdav

--account=project_code

defaults to the DAV_PROJECT value that you set in your start file

--time=00:00:00

hours:minutes:seconds or minutes:seconds; defaults to 6 hours

--ntasks=number_of_tasks

defaults to 1 task, when you launch the interactive job, your login shell uses 1
task or "slot," so adjust --ntasks by requesting enough cores to account for
that. In the MPI context, ntasks usually equals to your MPI size.

--mem=nG

Use this if you want to specify how much memory to use per node, from 1 to
1100 gigabytes. Such as --mem=300G

If you do not specify memory per node, the default memory available is 1.87G
per core that you request.

--constraint=skylake (default)

Other options include gpu, gp100, v100, x11…

CISL provides execdav script to initiate interactive sessions on
analysis systems

home/shiquan> execdav

…

Running command:

salloc --time 6:00:00 --partition dav --account sssg0001 --ntasks
1 srun --pty --mem 0 --
export=PATH=/bin:/usr/bin,SHELL,TERM,HOME,DISPLAY,XAUT
HORITY /bin/tcsh -l

Use TurboVNC to run programs with a GUI (e.g., VAPOR, IDL,
Matlab)

• VNC provides a remote GNOME3 desktop by default

vncserver_submit -o +C "casper&x11" -a <project_code>

specify KDE desktop with option –d kde

• You can reconnect to a VNC session as long as the Slurm job running
the session is active

• Typically faster and more responsive than x11

• You need a client on your local machine.

• You need the “tunnel connection” from your local machine. Please
follow the step by step instructions here:
https://www2.cisl.ucar.edu/resources/computational-
systems/casper/software/turbovnc

ML/DL resources on Casper

CISL provides several libraries for users' (ML/DL) work on Casper
nodes. These libraries have been compiled from source to use
native CUDA (GPU) and MPI libraries, increasing the capabilities
over downloadable distributions that are available online. The
ML/DL library installations can be found in NPL versions for
Python 3.7.5. They include:

TensorFlow v2.0 (tensorflow 2.0.0);

PyTorch v1.3.0a (torch 1.3.0a0+ee77ccb);

scikit-learn v0.22.1 (scikit-learn 0.22.2.post1);

Horovod v0.18.2 (horovod 0.18.2);

Keras v2.3.1 (Keras 2.3.1, Keras-Applications 1.0.8,

Keras-Preprocessing 1.1.0)

More details are on the following page:

• https://www2.cisl.ucar.edu/resources/machine-learning-deep-
learning

https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/
https://eng.uber.com/horovod/
https://keras.io/

Setup Ml/DL environment

ML/DL workloads are most likely targeted toward NVIDIA's Tesla
V100 hardware. To start an interactive job on a Casper node with
the appropriate GPUs, run the “execdav” command with a v100
constraint:

execdav --constraint=v100

module load python #default version is 3.7.5 now

module list #make sure “ncarenv” and “python/3.7.5” modules
loaded properly

ncar_pylib #activate the default version of the package library

ncar_pylib –l #check the version of package library

ncar_pylib –p # check the package versions inside the library

deactivate #exit after you have done your work

More on this page:

https://www2.cisl.ucar.edu/resources/python-–-ncar-package-
library#library

Point of contact for more about ML/DL

• CISL's Analytics and Integrative
Machine Learning (AIML) group:
https://www2.cisl.ucar.edu/anal
ytics-integrative-machine-
learning-aiml

• For developing further
collaborations, please contact
David John Gagne
(dgagne@ucar.edu)

Resources for learning about Artificial Intelligence and Machine Learning recommended from David’s page

(https://staff.ucar.edu/users/dgagne):

An Introduction to Statistical Learning by G. James et al. (https://www-bcf.usc.edu/~gareth/ISL/)

The Elements of Statistical Learning by T. Hastie et al. (https://web.stanford.edu/~hastie/ElemStatLearn/)

Deep Learning by I. Goodfellow et al. (https://www.deeplearningbook.org/)

Deep Learning with Python by F. Chollet (https://www.manning.com/books/deep-learning-with-python)

Interpretable Machine Learning by Christoph Molnar (https://christophm.github.io/interpretable-ml-book/)

mailto:dgagne@ucar.edu
https://staff.ucar.edu/users/dgagne
https://www-bcf.usc.edu/~gareth/ISL/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.deeplearningbook.org/
https://www.manning.com/books/deep-learning-with-python
https://christophm.github.io/interpretable-ml-book/

How to launch Jupyterhub

• Avoid using Safari browser if you are using a Mac.

• In the following example, we launch Jupyterhub.ucar.edu with
Google Chrome browser.

• You need to choose the “Casper DAV”, and input your project
account at the first time.

Package library on Jupyterhub DAV

After you launch your jupyterlab server, you need to refresh your ncarenv
module to access ncar_pylib

[shiquan@casper05 ~]$ module unload ncarenv

[shiquan@casper05 ~]$ module load ncarenv

[shiquan@casper05 ~]$ ncar_pylib

If you wish to use the NCAR Package Library inside of other Jupyter
instances on Cheyenne (for example, inside a personal NPL clone, conda
environment, or a JupyterHub instance), you can run the following
command to produce a user-space kernel from an available NPL version:

(NPL) [shiquan@casper09 ~]$ ncar_pylib --kernel 20200417

Creating user-space Jupyter kernel from 20200417...

Installed kernelspec npl3-20200417 in
/glade/u/home/shiquan/.local/share/jupyter/kernels/npl3-20200417

This kernel will be stored in your home directory and available in any
instance of Jupyter that you load.

GPU Capabilities on

Casper

Running single-GPU serial codes

NVIDIA drivers and the CUDA SDK are installed and can be used
on any Casper node with a GPU

Access Casper GPU node: execdav -C “gpu&casper”

Setup environment: module load cuda

Compile: nvcc -o program.exe code.cu

Execute: ./your_program.exe

Compiling multi-GPU MPI-CUDA code

Access Casper GPU node : execdav -C “gpu&casper”

Setup environment : module load cuda

module load openmpi

Compile: nvcc -c gpu_driver.cu

mpicc -c main.c

Link: mpicc -o program.exe gpu_driver.o main.o

Running multi-GPU MPI-CUDA code

cat mpi_gpu.slurm

#!/bin/bash -l

#SBATCH -J multi-gpu

#SBATCH -A <project_code>

#SBATCH -o mpi_gpu.log

#SBATCH -p dav

#SBATCH -t 00:10:00

#SBATCH -n 2

#SBATCH -N 2

#SBATCH -C gp100

Set temp to scratch

export TMPDIR=/glade/scratch/${USER}/temp

mkdir -p $TMPDIR

Run MPI program

module load openmpi cuda

srun ./yourGPU_program.exe

Here, we use a feature
constraint instead of a
resource request

We are sharing the
GPUs with others!

Some potential stumbling points...

• Starting a shell with srun uses one core - ask for N+1
if you wish to start N tasks from a Casper terminal

• If you request a gres setting to srun when starting a
terminal, those GPU resources won’t be available for
subsequent srun commands (e.g., MPI)

• VNC only works on nodes with the “x11” feature

CISL Help Desk / Consulting

Support Portal:

https://helpdesk.ucar.edu/plugins/servlet/desk/portal/3

https://www2.cisl.ucar.edu/user-support/getting-help

Phone: 303-497-2400

Specific questions from today and/or feedback:

Email: shiquan@ucar.edu

