Computation matters less than communication and memory

Greg Astfalk
International Computing for the Atmospheric Sciences Symposium (iCAS2015)
September 15, 2015
Outline

In this talk (I have 30 minutes, but need 3 hours) we’ll quickly cover:

- Performance shortcomings
- Communication problems
- Memory problems
Take-away “sound bites” for this talk

• In most high-end applications today we do not have a computation problem, we have a memory problem, and/or a communication problem

• The industry has spent years and many dollars engineering solutions to the wrong problem, that of increasing peak FLOPS

• Going forward we need to shift to focus on, and solve, the more critical problems; communications and memory
Computation
Performance

• A well known, seldom discussed, topic is application delivered performance as a percentage of peak
 – Single node 8–20%
 – Multi node 2–10%
• What we have done over history to solve this has been to increase the peak {FLOPS | OPS}
 – This has not helped (much)
• What we need are systems which have better performance/memory balance
 – More on a later slide
Performance vs. Moore’s Law (1 of 2)

• No universal metric for measuring computer performance
• SPECint benchmark is a good proxy for a variety of applications
• Since 2003 the increasing number of transistors are not providing commensurate performance benefit
Performance vs. Moore’s Law (2 of 2)

• If your interest is in floating-point performance, consider the SPECfp benchmark
 – Same issue
 – More performance potential that we don’t get
Application signatures (your mileage may vary)

• For tuned “physics” codes
 – Only about 30% of instructions are floating-point
 – Majority of “vector” instructions are of length 1
 – Branches, “other”, and memory operations are the majority
Code performance

• For the WRF code†
 – The 12km CONUS benchmark from 2010 to 2014
 o Performance advanced from 22 to 44 Gflops
 o Percent of peak declined from 16% to 4%
 – Memory bandwidth is at peak for 13% of execution

† My thanks to Michael Lough of HP for his expertise with WRF
Communication
Data communications characteristics

• The key characteristics we are concerned with are:
 – Latency
 – Bandwidth
 – Energy per bit
 – “Reach”
• Each of these needs improvement
Data communications characteristics

- Transistors are getting faster
- Communication is getting slower
Communication energies

• Caveat: This data is FAR more complex than it may seem
 – Each of the 4 data cells requires a long explanation/discussion
 – The data are considering what it will be like 4–5 years from now

<table>
<thead>
<tr>
<th>Energies, pJoules</th>
<th>Reach</th>
<th>Electronics</th>
<th>Photonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 centimeters</td>
<td></td>
<td>25</td>
<td>~3</td>
</tr>
<tr>
<td>100 meters</td>
<td>$O(10^4)$</td>
<td>$O(10^1)$</td>
<td></td>
</tr>
</tbody>
</table>
Compute and communication energies

• More energy to move data than to compute on it
 – Computation almost feels “free” relative to communication
 – Time will make this worse

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy (pJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit integer operation</td>
<td>1</td>
</tr>
<tr>
<td>64-bit floating-point operation</td>
<td>20</td>
</tr>
<tr>
<td>256 bit on-die SRAM access</td>
<td>50</td>
</tr>
<tr>
<td>256 bit bus transfer (short)</td>
<td>26</td>
</tr>
<tr>
<td>256 bit bus transfer (1/2 die)</td>
<td>256</td>
</tr>
<tr>
<td>Off-die link (efficient)</td>
<td>500</td>
</tr>
<tr>
<td>256 bit bus transfer (across die)</td>
<td>1,000</td>
</tr>
<tr>
<td>DRAM read/write (512 bits)</td>
<td>16,000</td>
</tr>
<tr>
<td>HDD read/write</td>
<td>$O(10^6)$</td>
</tr>
</tbody>
</table>

28nm CMOS, DDR3
What’s needed

• Use silicon nanophotonics rather than copper and electrons
 – CMOS scale
 – CMOS cost curve
 – DWDM
 – Greater bits per unit time per unit of cross-sectional area or die edge
 – Distance invariance and reduced energy per bit
• Continue R&D to reduce the threshold length-scale for photonics to $O(1)$ millimeter
 – We’re almost there
Memory
The issue

• Memory is the biggest performance issue today
• Why?
 – Has fallen way behind processors wrt bandwidth and capacity
 – It is not rapidly innovating
 – Must change the entire memory subsystem all at once
• Good news
 – We’re getting close to fixing it
Old news

• My advocating for memory is not new
 – “…the real difficulty, the main bottleneck, of an automatic very high speed computing device lies: At the memory…”
• John von Neumann in 1945
Balance and percent of peak

• Systems that have better “balance”, bytes/FLOP, deliver a greater percentage of peak
• Yes, it is as obvious as it seems
(Lack of) Balance over time

- There was a time in the past when there were systems with good balance.
- Sadly there aren’t any such systems any longer.
DRAM commonalities

• During DRAM’s entire existence, 40+ years, there have been three immutable constants
 – It is volatile
 – It has been treated as a limited, expensive resource
 – It uses a lot of pins (~150 per channel)
• For the past ~22 years another commonality is that “DDR” and DRAM have been in a synergistic, interdependent embrace
 – This is good, but mostly bad
DRAM

• DRAM is approaching its end of life or end of scaling
 – Does not mean it won’t be made and sold
 – Capacity, efficiency, and cost/bit will plateau (or get worse)

• Something will replace DRAM
 – Almost certainly it will be nonvolatile memory (NVM)
 – The transition to NVM will be very long-tailed
 – DRAM in 2020+?
 • Certainly
Memory capacity today

• Memory capacity is dictated by
 – Number of DDR channels
 – Capacity of DRAM parts
 – Number of DIMMs

• Sockets are pin limited (and will remain so) hence the maximum number of DDR channels per socket is ~6 (4 is more common)

• Number of DIMMs per channel is limited to ≤4
 – Each additional DIMM causes the DDR channel to run at lower frequency
 – Forces a trade-off of capacity for performance, or vice versa
Desired/target NVM characteristics

• What we may expect from NVM (not the first generation) when compared to DRAM
 – Price per bit ~ (1/10)
 – Bits per die > 8x (for same size die!)
 – Energy per bit < (1/2)
 – Static power < (1/10)
 – Read latency < 2x
 – Write latency < 4x (but mostly hidden)
Memory-semantics (everywhere?)

- Just beginning to contemplate the extensive use of memory-semantics
 - The processor only emits ld/st requests
 - Fewer busses from the processor
 - Saves pins (i.e., power, cost, and silicon real estate)
- NICs and HDD/SDD devices will exist for a long time
 - Will, hopefully, exist at the end of a memory-semantic channel
Physical address spaces

• Today’s physical memory is measured in Gigabytes (2^{30})
 – End-users think, design, and code accordingly
• Tomorrow’s physical memory will be Terabytes (2^{40})
 – Contemplate “storage” in the address space
 – Rethink algorithms and data structures
• (Tomorrow+ϵ)’s physical memory can be Petabytes (2^{50})
 – Eliminate all i/o operations, except archiving
What needs to change?

Today

Tomorrow

Need to change
The remedy
Epilogue

• Shift R&D from FLOPS and OPS to communications and memory
 – Load/store semantics everywhere
 – New memory PHY and protocol
 – Transition to NVM
 – More physical address bits
 – Silicon nanophotonics, with DWDM