Workflow-Driven Geoinformatics
Applications and Training in the Big Data Era

İlkay ALTINTAŞ, Ph.D.
Chief Data Science Officer, San Diego Supercomputer Center
Division Director, Cyberinfrastructure Research, Education and Development
Founder and Director, Workflows for Data Science Center of Excellence

SDSC
SAN DIEGO SUPERCOMPUTER CENTER

UC San Diego
SAN DIEGO SUPERCOMPUTER CENTER at UC San Diego
Providing Cyberinfrastructure for Research and Education

• Established as a national supercomputer resource center in 1985 by NSF
• A world leader in HPC, data-intensive computing, and scientific data management
• Current strategic focus on “Big Data”, “versatile computing”, and “life sciences applications”

Recent Innovative Architectures

• **Gordon:** First Flash-based Supercomputer for Data-intensive Apps
• **Comet:** Serving the Long Tail of Science
Data Science Today is Both a Big Data and a Big Compute Discipline

Computing at Scale + Big Data = Enables dynamic data-driven applications

Requires:
- Data management
- Data-driven methods
- Scalable tools for dynamic coordination and resource optimization
- Skilled interdisciplinary workforce

New era of data science!
Needs and Trends for the New Era Data Science
Ultimate Goal

Big Data

Insight

Action

Data Science
How does successful data science happen?

“Big” Data + Exploratory Analysis and Modeling → Insight

Question → Insight

Insight = Data Product

SDSC SAN DIEGO SUPERCOMPUTER CENTER

UC San Diego
Insights amplify the value of data…

…, but there are many ways to get to insights.
Approach: Focus on Process and Team Work
Create an Ecosystem that Enables Needs and Best Practices

ACQUIRE

PREPARE

ANALYZE

REPORT

ACT

• data-driven
• dynamic
• process-driven
• collaborative

• accountable
• reproducible
• interactive
• heterogeneous
What would it such an ecosystem look like?
Creating a Collaborative Data Science Ecosystem on top of Advanced Infrastructure
What are some challenges specific to atmospheric sciences?
Geospatial Big Data

- Flood of new data sources and types
 - Needs new data management, storage and analysis methods
 - Too big for a single server, fast growing data **volume**
 - Requires special database structures that can handle data **variety**
 - Too continuous for analysis at a later time, with increasing streaming rate, i.e., **velocity**
 - Varying degrees of uncertainty in measurements, and other **veracity** issues
 - Provides opportunities for scientific understanding at different scales more than ever, i.e., potential high **value**
The ‘scalability’ bottleneck

- Resources needed for geospatial big data (e.g., satellite imagery) analysis exceed current capabilities, especially in an on-demand fashion
- **Cloud** computing is an attractive on-demand decentralized model
 - Need new scheduling capabilities
 - on-demand access to a shared configurable resources
 - programmable networks, servers, storage, applications, and services
 - Need ability to easily combine users environment and community tools together in a scalable way
 - Various tools with different computing scalability needs
- Cost!!!
The ‘sensor data’ bottleneck

- Data streaming in at various rates
- “Big Data” by definition in its *volume, variety, velocity* and *viscosity*
 - Need to improve *veracity* and add *value* by providing provenance- and standards-aware on-the-fly archival capabilities
 - QA/QC and automate (real-time) analysis of streaming data before it is even archived.
 - Often low signal-to-noise ratio requiring new methods
- Need for integration of new streaming data technologies
The “workforce” bottleneck

• Geospatial data processing requires a lot of expertise
 • GIS, domain expertise, data engineering, scalable computing, machine learning, ...

• No open geospatially enabled big data science education platform

• Teach not just technical knowledge, but collaborative work culture and ethics
Using workflows to get there…
Workflows for Data Science Center of Excellence at SDSC

Goal: Methodology and tool development to build automated and operational workflow-driven solution architectures on big data and HPC platforms.

- Access and query data
- Support exploratory design
- Scale computational analysis
- Increase reuse
- Save time, energy and money
- Formalize and standardize
- Train
How can I get smart people to collaborate and communicate to analyze data and computing to generate insight and solve a question?

Focus on the question, not the technology!
Programmability
Ease of use, iteration, interaction, re-use, re-purpose

Reproducibility
Ability to validate, re-run, re-play

Scalability
From local experiments to large-scale runs

Workflow Design
Deploy and Publish
Workflow Scheduling and Execution Planning
Workflow Monitoring
Workflow Execution

Reporting
Execution Review
Provenance Analysis

BUILD and EXPLORE
SHARE
SCALE and ITERATE
LEARN and REPORT

PPoDS
Process for Practice of Data Science

SDSC
SAN DIEGO SUPERCOMPUTER CENTER
UC San Diego
Example: Using geospatial big data for wildfire predictions
WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires

Big Data

Monitoring

Visualization

Fire Modeling

http://wifire.ucsd.edu
Closing the Loop using Big Data
-- Wildfire Behavior Modeling and Data Assimilation --

- Computational costs for existing models too high for real-time analysis
- a priori -> a posteriori
 - Parameter estimation to make adjustments to the (input) parameters
 - State estimation to adjust the simulated fire front location with an a posteriori update/measurement of the actual fire front location
Fire Modeling Workflows in WIFIRE

Real-time sensors

Weather forecast

Monitoring & fire mapping

Fire perimeter

Landscape data

firemap.sdsc.edu
Data-Driven Fire Progression Prediction Over Three Hours

Collaboration with LA and SD Fire Departments
http://firemap.sdsc.edu

August 2016 – Blue Cut Fire

Tahoe and Nevada Bureau of Land Management
Cameras: 20 cameras added with field-of-view
Some Machine Learning Case Studies

- Smoke and fire perimeter detection based on imagery
- Prediction of Santa Ana and fire conditions specific to location
- Prediction of fuel build up based on fire and weather history
- NLP for understanding local conditions based on radio communications
- Deep learning on multi-spectra imagery for high resolution fuel maps
- Classification project to generate more accurate fuel maps (using Planet Labs satellite data)
Classification project to generate more accurate fuel maps

- Accurate and up-to-date fuel maps are critical for modeling wildfire rate of speed and potential burn areas.
- Challenge:
 - USGS Landfire provides the best available fuel maps every two years.
 - The WIFIRE system is limited by these potentially 2-year old inputs. Fuel maps created at a higher temporal frequency is desired.
- Approach:
 - Using high-resolution satellite imagery and deep learning methods, produce surface fuel maps of San Diego County and other regions in Southern California.
 - Use LandFire fuel maps as the target variable, the objective is create a classification model that will provide fuel maps at greater frequency with a measure of uncertainty.
Reused in Built Infrastructure and Demographic Analysis

The analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Each image can be manually reviewed for imagery is available. Images can then be selected for download by being added to the Digital Globe archive to the user's library. When the imagery is extracted from the Digital Globe archive from all satellite image products that Digital Globe provides. The Global Basemap data is searched and downloaded using a web interface that enables searching via keywords or coordinate searches similar to a Google Maps interface. When zoomed in, the available imagery for a region shows in a right-sided pane to scroll through the dates for when imagery was taken with it), reprojected the map projection to WGS84, and taken with it), reprojected the map projection to WGS84, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

The same histogram is also viewable on tiled display, as shown in Fig 6, for deeper high resolution collaboration and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Satellite Imagery is available. Each image can be manually reviewed for imagery is available. Images can then be selected for download by being added to the Digital Globe archive to the user's library. When the imagery is extracted from the Digital Globe archive from all satellite image products that Digital Globe provides. The Global Basemap data is searched and downloaded using a web interface that enables searching via keywords or coordinate searches similar to a Google Maps interface. When zoomed in, the available imagery for a region shows in a right-sided pane to scroll through the dates for when imagery was taken with it), reprojected the map projection to WGS84, and taken with it), reprojected the map projection to WGS84, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

The same histogram is also viewable on tiled display, as shown in Fig 6, for deeper high resolution collaboration and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

The same histogram is also viewable on tiled display, as shown in Fig 6, for deeper high resolution collaboration and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.

Informal settlements are interspersed in the middle and to the right spaces fall mostly to the left, and open space on the right. The results of the clustering are visualized in a web portal that is divided into two sections: on the left is a small tile cluster of roads oriented Northeast and Southwest, and then each of the clusters were mapped. Figure 4 shows samples of image tiles in a cluster of Northeast trending roads and pan around the histogram to see details of the individual tiles. Users can zoom in that can be viewed using any browser. The first part of the analysis for this project was performed on imagery of Mumbai, one 3.4GB image created approximately 30,000 images from all of their available locations. We therefore downloaded scenes from other cities to test the transferability of our methods and answer fundamental questions about informal settlements in other urban environments. This modality makes our histogram visualization approach scalable to many scenarios.
Summary

- Geospatial big data has all the typical big data challenges.
- Lessons learned from other disciplines to deal with these challenges should be applied.
- Workflows can be used both for managing scalable coordination and training students and workforce.
- Dynamic data-driven integration of machine learning, data assimilation and modeling is of potential use to many geo applications.
WIFIRE Team: It takes a village!

- PhD level researchers
- Professional software developers
- 32 undergraduate students
 - UC San Diego
 - UC Merced
 - Monash University
 - University of Queensland
- 1 high school student
- 4 MSc and 5 MAS students
- 2 PhD students (UMD)
- 1 postdoctoral researcher

SDSC - Cyberinfrastructure, Workflows, Data engineering, Machine Learning, Information Visualization, HPWREN

UCSD MAE - Data assimilation

Calit2/QI - Cyberinfrastructure, GIS, Advanced Visualization, Machine Learning, Urban Sustainability, HPWREN

UMD - Fire modeling

SIO - HPWREN
Part of the presented work is funded by NSF, DOE, NIH, UC San Diego and various industry partners.