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Abstract—This study applies methods from causal dis-
covery theory to the output data of climate models.
Causal discovery seeks to identify potential cause-effect
relationships from data and is used here to learn so-called
causal signatures from the data that indicate interactions
between the different atmospheric variables. We hope
that these causal signatures can act like finger prints for
the underlying dynamics, and can as such be used in a
variety of applications. Sample applications include (1)
distinguishing correct model runs from incorrect ones, i.e.
providing an additional error check for climate model runs
and (2) assessing the impact of data compression on the
causal signatures, as a means to determine which type and
amount of compression is acceptable. Still being in the
early stages of this project, we primarily describe work in
progress and future work.

I. BACKGROUND

The framework of causal discovery provides algo-
rithms to identify potential cause-effect relationships
from observational data [1], [2]. The output of such
algorithms is a graph structure that indicates the potential
causal connections of the observed variables. Originally
developed for applications in the social sciences and
economics, causal discovery is now used successfully in
many disciplines including, recently, climate science, e.g.
to track interactions between different locations around
the globe [3], [4], [S] or to identify interaction patterns
between compound climate variables [6], [7].

Here we focus on what we can learn about the
relationships between individual atmospheric variables
by applying causal discovery to the output of climate
models. The data for each run then yields what we
call causal signatures, i.e. patterns of interaction
between the different atmospheric variables, and
can be interpreted as finger prints of the underlying
dynamics in the model. We use the well established
framework of structure learning for probabilistic
graphical models, which is described in much detail in
[L], [2]]. See [7] for the details of the approach used here.
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II. DATA

We use publicly available data from the Community
Earth System Model (CESM) Large Ensemble (LENS)
Community Project [8]. (See also https://www2.cesm.
ucar.edu/models/experiments/LENS.) CESM-LENS data
currently consists of 38 1-degree CESM simulations
from 1920-2100. The ensemble members differ by an
initial perturbation to the atmospheric temperature field.
For the first stage of this work, we explore daily global
spatial average timeseries data from 1920-2005 (86
years), which provides 31,391 data values for each of
approximately 50 variables.

ITI. SAMPLE CAUSAL SIGNATURE PLOT

We first calculated results for the connections between
50 different atmospheric variables, based on daily data
and global averages, and using two different data sets
and a variety of temporal resolution (e.g. looking for
connections between variables that require multiples of
D = 1,10,30,60 days to travel from cause to effect).
The graph results indicated groups of variables that are
highly redundant. We subsequently selected a subset of
15 variables that are representative of the whole set and
have little redundancy. Fig. 1 shows a sample causal
signature plot for those variables for one data set and
D = 1 day. Repeating this procedure for the second
ensemble member showed that most of the connections,
and even many of the time scales are identical. However,
for larger values of D we get graphs that are more
dense and with very different connections. Clearly, for
different values of D the algorithm picks up connections
of different time scales (fast vs. slow interactions) and so
one needs to look at more than one time scale to identify
all significant connections.

IV. TARGET APPLICATIONS
A. Climate model software verification

Continually evolving and complex simulation codes
such as CESM require frequent software verification
and quality assurance to detect errors that may have
been introduced into the code or hardware or software
environments. To this end, the recently-developed CESM
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Fig. 1. Sample causal signature plot for D = 1. Connections in
orange indicate connections between different variables, while blue
arrows indicate persistence, i.e. how long the state of a variable
strongly affects itself. The numbers next to the connections indicate
the number of days from potential cause to potential effect. Dashed
lines indicate weak connections.

Ensemble Consistency Testing (CESM-ECT) tool in [9]
evaluates new climate simulations against an accepted
ensemble distribution composed of yearly global means.
The primary motivation for the work presented here is to
potentially complement CESM-ECT by detecting subtle
changes of relationships between variables on shorter
time scales, which might go unnoticed using yearly
global means.

We propose to first establish baseline causal signatures
from an ensemble of model output that is known to be
correct, i.e. to establish the range of correct/acceptable
signatures. (Differences are expected for a variety of
reasons, e.g. different initial conditions may trigger cer-
tain dynamic mechanisms more strongly than others; the
statistical tests used in causal discovery are never perfect;
noise in the data.) Secondly, the signature of any new
run is calculated on the fly, and compared to the correct
signatures to establish whether it is acceptable (within
range) or not.

B. How much compression is acceptable?

At NCAR we are also studying how compression of
the output data of model runs affects the properties of
the data [[10]. This is a very important question to decide
what kind of compression can safely be applied to store
the massive amounts of data generated by the models and
available to the public. We will test how much the causal
signature of the model outputs changes after different
compression algorithms have been applied. This may

provide a useful method to determine which type and
amount of compression is acceptable, in addition to the
means already investigated in [10].

V. FUTURE WORK

Next steps for software verification include (1) cal-
culating and studying the causal signatures for many
different data sets (both correct and incorrect sets)
and different time scales; (2) developing base lines for
acceptable results; (3) repeating the procedure using
averages over several regions, rather than just global
averages. Furthermore, we also expect to find some new
and interesting insights into interaction patterns between
atmospheric variables from this approach.
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