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MOTIVATION

- HOLODEC-ii hydrometeor sensor from NCAR 
EOL1

- Samples 20 cubic centimeter atmosphere 
sample

- Returns inline complex hologram, use fourier 
transform to reconstruct three-dimensional image

Mounted HOLODEC Sensor

EOL HOLODEC SchematicHOLODEC Hardware



MOTIVATION

- Raw sensor data to hydrometeor 
attributes

- Requires holograms be 
reconstructed at target depth

- Wave propagation algorithm to 
unpack sensor depth dimension2

HOLOSUITE METHOD

Sample HOLOSUITE Particle Interference



IMAGE REFOCUSING
- Sensor data is noisy and particles are sparse
- Water particles only for geometric simplicity
- Synthetic data here onwards

Sample Synthetic HOLODEC Hologram Data

Sample Particle Prediction Labels



HOLODEC-ML

- 3D complex tensor -> 2D 
propagation image

- NCAR MILES: ML Powered particle 
segmentation algorithm3

- PyTorch SMP network trained on 
synthetic particle data

- Images treated as independent, 
classical segmentation problem

- Higher false positive rate in sensor 
depth direction, particle spans 
reconstruction depths

Segmentation Model Outline

Sample Network Input Across Adjacent Depths



1. HOLOGRAM PHASE DATA

- Sensor data is complex wave 
representation (a+bi)

- Include magnitude and phase
- Old method: absolute value to 

convert into SMP compatible image
- New method: give magnitude and 

phase tensors to model, capture Z 
depth detail better

- Wave phase more variable with 
respect to propagation distance

      MAGNITUDE                         PHASE

Sample Network Input



1. SENSOR DEPTH CONTEXT DATA

- Don’t treat propagation distance frames as independent
- Give model propagation context in positive sensor direction
- Stacked in tensor color channel along with phase/magnitude components

Rebuilt Preprocessing Pipeline



2. FULL-HOLOGRAM INFERENCE

- Goal: HOLODEC hologram -> particle prediction mask data
- New metric - area under receiver operating characteristic curve (0.5 is worst, 

1.0 is best)
- Evaluated on small fixed sample, realistic inference simulation
- Greatly improved optimization time w.r.t. Minimizing FPR

Sample ROC DiagramFeature Importances w.r.t AUROC Objective



HYPERPARAMETER OPTIMIZATION
- Tuned on ECHO, 

NCAR MILES 
optimizer

- Extension of Optuna
- Optimal configuration 

of hundreds of trial 
configurations

- Powered by CISL 
Casper

ECHO Model Configuration Performance across Time



ECHO Area Under ROC and Best Value Across Time
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PERFORMANCE

- Best validation dice loss with added context: 0.073 
- Best AUC maximizing AUROC: ~0.7, dice loss of ~0.03
- Greatly improved optimization speeds HOLODECML Performance with Dice and AUC Objective Functions

ECHO Dice Coefficient Loss and Best Value Across Time
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FUTURE WORK

- GAN-stylized synthetic data to 
mirror real data4

- Ice particulate segmentation
- Goal: on-the-fly image 

inference
- Evaluate performance on 

different sensors, datasets, 
campaigns

GAN-Stylization of Synthetic Data

Ice particle segmentation
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