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Why do we need to understand ML models?

INPUT OUTPUT



XAI Pipeline 
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Figure 1. XAI pipeline

● Verify if the predictions of the ML models 
are consistent with the real-world

● Increase the credibility of machine 
learning models for both technical and 
non-technical users

XAI methods aim to:

Model Data 
& 

Prediction 

Explanations User makes 
decision 

XAI method



Machine Learning Pipeline
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focus of the presentation



Precipitation-type model
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DATA
INPUT ⇒  Rapid Refresh
TRUE LABELS ⇒ mPING 

Fig 2. RAP data

Background  |   XAI Methods  |  Results  |  Conclusions

0m

5000m



Precipitation-type model
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PERFORMANCE:

● mPING vs ML
● Overprediction of rain
● Under prediction of sleet and freezing rain
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Post hoc XAI methods
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Gradient * Input Which features are most influential in predicting 
the model's output?

Shapley Additive 
Explanations (SHAP)

How much does each feature contribute to the 
model's predictions?

Permutation Feature 
Importance

How does the performance of the model change 
when the information content of a feature is 

destroyed? 

Fig. 3 Input * Gradient attribution method
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Gradient * Input
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Which features are most influential in predicting the model's output?

Gradient * Input works by multiplying 
the gradient of the model's output with 
the input features. 



Gradient * Input: CONUS plots
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Which features are most influential in predicting the model's output?
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Gradient * Input: CONUS plots
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Which features are most influential in predicting the model's output 
with respect to their height?
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Shapley Additive Explanations (SHAP) 
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How much does each feature contribute to the model's predictions?
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SHAP calculates the average contribution of each 
feature, representing how much each feature 
influences the model's prediction



Permutation Feature Importance 
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What is the importance of each feature in predicting the model's output when the feature values are randomly 
shuffled?

Permutation feature importance works by 
randomly shuffling the values of a single 
feature and measuring the resulting 
change in the model's performance. The 
feature with the largest change in 
performance is considered to be the most 
important feature.
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XAI Results Summary 
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Limitations of XAI methods
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➔ There is not a XAI method that works for every explainability task
Some factors to consider: 
◆ model type 
◆ scope of the explanation
◆ audience - who needs to understand the model?  

➔ They can be computationally expensive 

➔ XAI methods often rely on simplification techniques may not capture the 
nuances of the decision-making process 

➔ The results of XAI might be hard to interpret 

Background  |  XAI Methods  |  Results  |  Conclusions



Main Takeaways and Future Steps
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XAI Methods: 

➔ Temperature at 0m is the top feature for 
across the three XAI methods

➔ The Input features that are near the 
surface tend to be the most important

➔ Each XAI method provides slightly different 
results.

Broader implications:

➔ Support the communication of the 
predictions of this model to a wide 
audience (decision makers, forecasters 
and general users)

saavedrariosm@berea.edu
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Figures:

Fig 1. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i trust you?”: Explaining the 

predictions of any classifier. arXiv preprint arXiv:1602.04938, 2016.

Fig 2. RAP, NOAA, Rapid Refresh/Rapid Update Cycle, 

https://www.ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update#:~:text=The%20Nati

onal%20Centers%20for%20Environmental,for%20smaller%20regions%20of%20interest.

Fig 3. https://i.stack.imgur.com/Nxhrr.jpg 
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Main Takeaways and Future Steps

18

XAI Methods: 

➔ Temperature at 0m is the top feature for 
each of the methods

➔ The Input features that are below 1000 
meters above ground tend to be the most 
important

➔ Each XAI method provides slightly different 
results.

Broader implications:

➔ Support the communication of the 
predictions of this model to a wide audience 
(decision makers, forecasters and general 
users)

saavedrariosm@berea.edu

Questions/Feedback? 



Appendix: Input * Gradient CONUS plots
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Feature Importance by precipitation type: Temperature 
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Feature Importance by precipitation type: Dew Point
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Feature Importance by precipitation type: Dew Point
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Feature Importance by precipitation type: UGRD 
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Feature Importance by precipitation type: UGRD
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Feature Importance by precipitation type: VGRD
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Feature Importance by precipitation type: VGRD
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