
GPU Enablement of MICM Chemistry Solver

Qina Tan, Jian Sun, John Dennis, Matthew Dawson
National Center for Atmospheric Research

1. Model-Independent Chemistry Module (MICM)
• Software to enable study of time-dependent behavior of atmospheric chemistry

• Being developed in C++ currently with about 2000 lines of codes and 96% testing coverage

• Computationally intensive yet capable of being executed concurrently in parallel

• Explored three GPU-accelerated strategies (via CUDA) & compared their performances

2. GPU Programming in CUDA
• GPUs enable parallel computation of large data sets with dense array of cores

• CUDA is a parallel computation platform and programming model created by NVIDIA

• Requires manual configuration and launch of kernel function

• Requires memory management between host (CPU) and device (GPU)

3. Implementation: AddForcingTerms()
• Computes the rate of change in atmospheric composition associated with rate constants and reactant

concentrations of a set of chemical reactions occurs in the atmosphere

• Data are organized in matrix: rows as grid boxes in 3D climate model, columns as rate constants of
reactions

• Matrix data are transformed into linear vector in C++ using row-major order and column-major order

• Stride memory access pattern in row-major order and contiguous memory access pattern in column-major
order

• Parallelism at grid/reaction level may cause data race condition, which is solvable with atomic operations

Snippets for threads accessing data organized by row-major order (left) and column-major order (right)

M[0, 0] M[0, 1] M[0, 2] M[1, 0] M[1, 1] ….

M[0,0] M[1,0] M[2,0] M[0,1] M[1,1] …

M [0, 0] M [0, 1] M [0, 2]

M [1, 0] M [1, 1] M [1, 2]

M [2, 0] M [2, 1] M [2, 2]

4. Experiment
• Machine: Gust
• Compiler: nvhpc/23.5
• Bit for Bit Accuracy of CPU code against GPU code
• CPU Performance: 1 CPU
• GPU Performance: 1 NVDIA A100 GPU (w/ and w/o data transfer time)
• 3 CUDA implementation versions:

• Parallelism at grid level with row-major order memory layout
• Parallelism at grid level with column-major order memory layout
• Parallelism at grid/reaction level with column-major order memory layout

5. Time Performance
Performance comparisons between CPU vs GPU (top left, bottom left) and between GPU-accelerated strategies (bottom right)

6. Conclusion & Future Work & Acknowledgment
• We ported AddForcingTerms() function to GPU via CUDA with different implementations

• Performance testing shows increasing speedups with increasing problem size

• Future works: port more function to GPU via similar approach

• My sincere gratitude to NCAR and SIParCS mentors Jian Sun, John Dennis and Matthew Dawson

• Constant input for all three graphs:
500 reactions, 400 chemical species

