

Python Data Analysis and Visualization for Unstructured Grid Data Ian Franda^{1,2}, Orhan Eroglu¹, Philip Chmielowiec¹, Anissa Zacharias¹

1. Background

Unstructured Grids

- \succ Many climate and global weather modeling communities have begun to transition from simple structured grids to more scalable and flexible unstructured grids.
- > Support for unstructured grids in the Scientific Python Ecosystem is limited, making standard data analysis routines much more challenging.

UXarray

- \succ UXarray is a Python package supported by project Raijin that provides tools for standard data analysis techniques that operate directly on unstructured grids.
- > This year's SIParCS project focused on visualization of unstructured grids, including the development of functions to support visualization and the development of a Jupyter notebook to compare visualization methods.

Node and Edge Plots

- \succ If our goal is to view the geometries of the grid, we can create node plots or edge plots
- \succ These are simple to make and quick to compute

Vector Images

- \succ Render each geometry individually
- \succ Can be computationally expensive with large datasets

Raster Images

 \succ Approximate geometries with a grid of pixels \succ Provide faster rendering

Visualization

Notebook

¹National Center for Atmospheric Research ²University of Wisconsin Madison

4. Visualization Comparisons

6. Additional Information

2. Workflow

3. Antimeridian Splitting Grids Reside on a Sphere

Plot Comparisons Across Resolutions

- ideal for viewing grid geometries.
- \succ

 \succ The Antimeridian is the line at 180°E and 180°W. Polygons that cross this line wrap around the Earth > UXarray uses the Python package **antimeridian** to split

these polygons so that they connect to the Antimeridian

5. Conclusions

 \succ Node and Edge plots render quickly in Matplotlib and are

Plotting time for raster images are not dependent on the number of faces in a grid, making rasterization ideal for large datasets if image quality is not a priority.