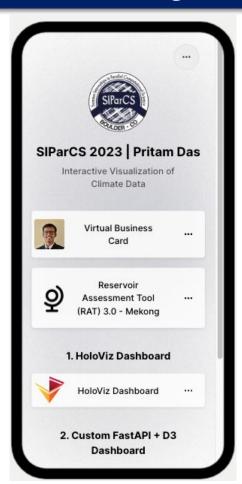
Interactive Visualization of Climate Dataset


Pritam Das, Negin Sobhani, Tammy Zhang and Nihanth Cherukuru

August, 2023

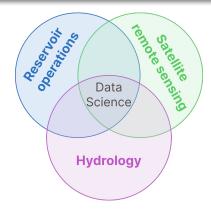
Before we begin...

linktr.ee/pdas47

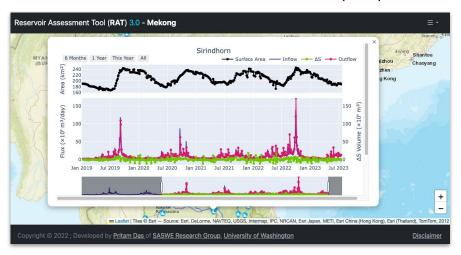
I encourage you to follow along

or save it for later!

> whoami


Pritam Das

3rd year PhD student
Civil & Environmental Engineering
University of Washington



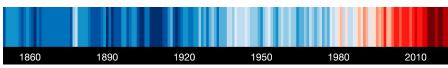
linktr.ee/pdas47

Reservoir Assessment Tool (RAT)

Objectives and Outline

Objectives

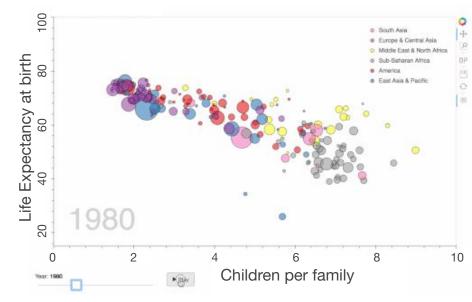
- Building a dashboard for the CESM LENS2¹ climate dataset.
- Explore different python based dashboarding solutions.


Outline

- Introduction
- Data
- Methods
- Dashboard demo and functionality
- Performance comparisons
- Conclusions

Interactive Visualization in Science

"A picture is worth a thousand words"



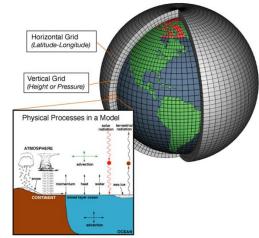
source: Modified (cropped) from #ShowYourStripes by Ed Hawkins, National Centre for Atmospheric Science, UoR. CC BY 4.0.

Interactive visualizations let you **read your data** like a **book**

In Science

- Exploration what to focus on
- Analysis discover patterns
- Results & Communication share with the community

source: https://holoviews.org/gallery/apps/bokeh/gapminder.html


Data

LENS2 - CESM2 Large Ensemble Community Project

- Output of CESM (Earth System Model) simulates various Earth processes
- Ensemble Simulation 100 different simulations with varying initial conditions
- 1° spatial resolution, between 1850-2100 (daily/monthly)
- Forcing Types CMIP6 & SMBB¹

Pre-processing

- Originally ~70TB difficult to load it in memory
- Annual Mean and Std. Deviation across ensemble members
- Final Data Size: ~400MB / variable * 8 Variables (subset)

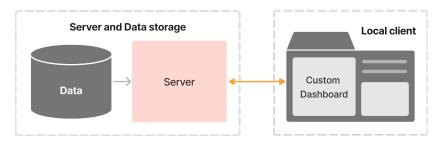
Source: NOAA, https://celebrating200years.noaa.gov/breakthroughs/climate model/modeling schematic.html

Explored methods

The HoloViz Ecosystem

High-level python plotting tools

- Declarative plotting describe your data to make it interactively visualizable
- Choice between plotting backends bokeh: interactive visualization matplotlib: publishing quality static plots
- Extends existing packages in the scientific python stack - xarray, pandas, dask

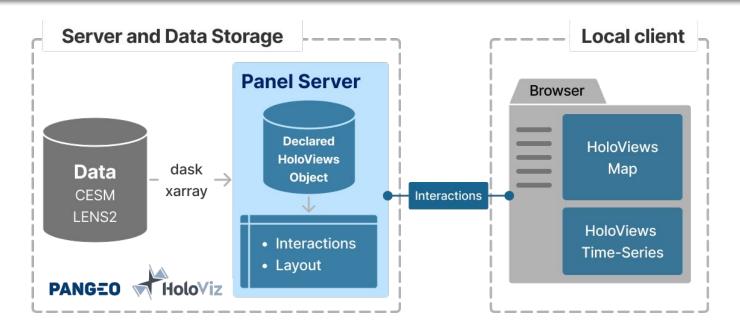


Panel

Custom solution

- Custom Client-Server model
- Server: performantly querying and sending data
- Front-end/Client: making appropriate requests and visualization

HoloViz based dashboard demo


Visit dashboard at

http://146.190.13.102/

link also available in linktree

Big screen (laptop) preferred

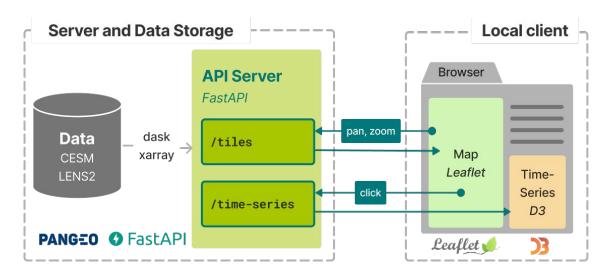
HoloViz based dashboard conceptual diagram

- Standing on the shoulders of Giants out-of-the box interactivity
- Jupyter notebooks to servable dashboards

- Easy to begin, difficult to customize
- Performance comparatively lower especially for larger datasets

Custom FastAPI + D3 based dashboard demo

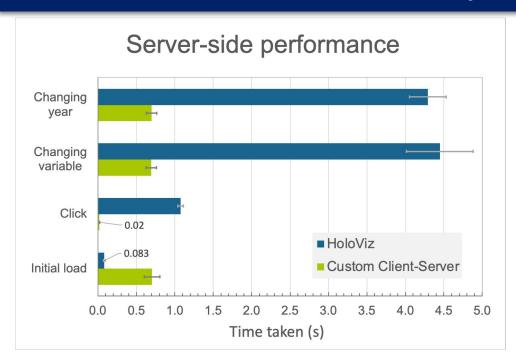
Visit dashboard at


http://143.244.211.235/

link also available in linktree

Big screen (laptop) preferred

Custom FastAPI + D3 based dashboard conceptual diagram


- API server built using FastAPI
- The website makes API requests for either tile or time-series data, and displays accordingly

- Minimal overhead higher performance is possible.
- More customizations with D3 is possible

- Higher human time for development
- Each interaction will have to be explicitly defined - more design considerations

What about performance?

Server configuration: 2 vCPUs, 16 GB Memory, 50GB SSD.

- Performance alone is not the only consideration
- Personnel time for development, learning curve of Javascript for scientists
- Differing features and design choices

Time required to execute **all** the **functions** following an **interaction event**.

- Overall, custom solution is faster.
- Depends a lot on design choices.

Bottlenecks?

Depends on data-size and interaction type

HoloViz:

- Memory Low data size (in-core)
- Disk IO High data size (out-of-core)
- CPU Regional mean

Custom:

- Memory/Disk data size
- Network higher data-transfer

Conclusions

HoloViz

- Quicker to get started
- Interfaces well with existing tools
 xarray, jupyter, matplotlib, ...
- Suitable for smaller datasets
- Exploration and Analysis

Custom solution

FastAPI + D3

- More headroom for performance optimization
- Higher human (development) time
- Results and Science
 Communication

Recommendations and Future work

- Use HoloViz to get started, and use a custom solution for final results.
- Caching can help boost performance.
- Further optimizations to callback function calls and API calls.
- Containerization for easy deployment.

Thank You!

To NCAR, SIParCS and CISL for this opportunity,

To Negin, Nihanth and Deepak for being awesome mentors,

To Virginia, Jerry, Julius, and Ben for making the internship such a

smooth and fun experience,

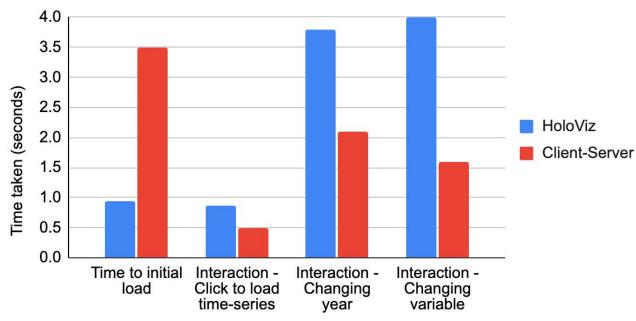
To all the staff, especially admins, who made it all possible, and, to all the fellow interns and friends I made along the way!

References and Acknowledgements

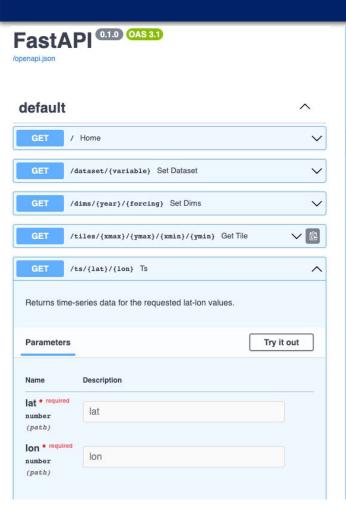
1. Rodgers, K. B., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J.-E., Simpson, I. R., Stein, K., Stuecker, M. F., Yamaguchi, R., Bódai, T., Chung, E.-S., Huang, L., Kim, W. M., Lamarque, J.-F., Lombardozzi, D. L., Wieder, W. R., and Yeager, S. G.: **Ubiquity of human-induced changes in climate variability**, *Earth Syst. Dynam.*, *12*, *1393–1411*, https://doi.org/10.5194/esd-12-1393-2021, **2021**.

Acknowledgements

NCAR, Boulder CO, USA and the IBS Center for Climate Physics, Busan, South Korea for jointly developing the CESM2 Large Ensemble Community Project (LENS2) climate dataset.


Supplemental materials follow

User side performance


User-side responsiveness

Time taken for updating dashboard: event trigger to final render

- Measured using chrome DevTools, manually
- Includes all the time components
 - Server processing
 - Data transfer
 - Client side processing and rendering

FastAPI - docs

server/docs

Provides useful info about the API, its endpoints, and you can try out these endpoints in this interface.

Carbonplan

 How does carbonplan methods work in comparison with the presented dashboards?