Toward consistent nonlinear filtering and smoothing via measure transport

Ricardo Baptista ${ }^{1}$

Joint work with Alessio Spantini ${ }^{2}$, Youssef Marzouk ${ }^{2}$,
Max Ramgraber ${ }^{2}$, Mathieu Le Provost ${ }^{3}$
${ }^{1}$ Computing + Mathematical Sciences California Institute of Technology
${ }^{2}$ Center for Computational Science and Engineering
Massachusetts Institute of Technology
${ }^{3}$ Department of Computer Science
Long Island University

NCAR CISL Seminar

$$
\text { July 6, } 2023
$$

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Wind forecast

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Wind forecast

Epidemiological forecast

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Sequential inference is ubiquitous

- Goal: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

Vortex shedding around an aircraft wing

Non-Gaussianity is ubiquitous

- Non-Gaussianity can include multi-modality and/or tail-heaviness

Lorenz-63 smoothing ensemble

(\mathbf{X}, \mathbf{Y}) distribution in additive manufacturing model [B et al., 2022]

Non-Gaussianity is ubiquitous

- Non-Gaussianity can include multi-modality and/or tail-heaviness

Lorenz-63 smoothing ensemble

(\mathbf{X}, \mathbf{Y}) distribution in additive manufacturing model [B et al., 2022]

Non-Gaussianity is ubiquitous

- Non-Gaussianity can include multi-modality and/or tail-heaviness

Lorenz-63 smoothing ensemble

(\mathbf{X}, \mathbf{Y}) distribution in additive manufacturing model [B et al., 2022]

Takeaway: Gaussian approximations under-predict data informativeness

Non-Gaussianity is ubiquitous

- Non-Gaussianity can include multi-modality and/or tail-heaviness

Lorenz-63 smoothing ensemble

(\mathbf{X}, \mathbf{Y}) distribution in additive manufacturing model [B et al., 2022]

Takeaway: Gaussian approximations under-predict data informativeness Goal: Develop consistent inference methods for non-Gaussian problems

Sequential Bayesian inference

State-space models

- States follow model dynamics $\pi_{\mathrm{X}_{t} \mid \mathrm{X}_{t-1}}$
- Observations follow likelihood function $\pi_{\mathrm{Y}_{t} \mid \mathrm{X}_{t}}$

Goal: Recursively sample distributions $\pi_{\mathbf{x}_{t}| |_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$ or $\pi_{\mathbf{x}_{1: t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$

Sequential Bayesian inference

State-space models

- States follow model dynamics $\pi_{\mathrm{X}_{t} \mid \mathrm{X}_{t-1}}$
- Observations follow likelihood function $\pi_{\mathrm{Y}_{t} \mid \mathrm{X}_{t}}$

Goal: Recursively sample distributions $\pi_{\mathbf{X}_{t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$ or $\pi_{\mathbf{X}_{1: t} \mid \mathbf{y}_{1}^{*}, \ldots, \mathbf{y}_{t}^{*}}$
Common challenges leading to non-Gaussianity

- Nonlinear dynamical models or observation operators
- Sparse observations in space and time

Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples

Bayesian inference

Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples

Bayesian inference

Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples

Bayesian inference

Ensemble Kalman filters and smoothers

- Analysis step updates particles by estimating a linear transformation
- Inconsistent for capturing Bayesian solution

Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples

Bayesian inference

Ensemble Kalman filters and smoothers

- Analysis step updates particles by estimating a linear transformation
- Inconsistent for capturing Bayesian solution

Goal: Perform analysis consistently and robustly in non-Gaussian settings

Prior-to-posterior transformations

Idea: Find map T that take samples from prior π_{X} to posterior $\pi_{\mathrm{X} \mid \mathrm{Y}}$

Prior-to-posterior transformations

Idea: Find map T that take samples from prior π_{X} to posterior $\pi_{\mathrm{X} \mid \mathrm{Y}}$

Plan for this talk:

(1) Maps for filtering $\mathbf{X}=\mathbf{X}_{t}$?

Prior-to-posterior transformations

Idea: Find map T that take samples from prior π_{X} to posterior $\pi_{\mathrm{X} \mid \mathrm{Y}}$

Plan for this talk:

(1) Maps for filtering $\mathbf{X}=\mathbf{X}_{t}$?
(2) Maps for smoothing $\mathbf{X}=\mathbf{X}_{1: t}$?

Prior-to-posterior transformations

Idea: Find map T that take samples from prior π_{X} to posterior $\pi_{\mathrm{X} \mid \mathrm{Y}}$

Plan for this talk:

(1) Maps for filtering $\mathbf{X}=\mathbf{X}_{t}$?
(2) Maps for smoothing $\mathbf{X}=\mathbf{X}_{1: t}$?
(3) Leveraging structure in T to tackle high-dimensional problems

Transport maps characterize distributions

- Transport map S induces a deterministic coupling between a target density π and a reference density η (e.g., standard normal)
- Generate cheap and independent samples: $\mathbf{x} \sim \pi \Leftrightarrow S(\mathbf{x}) \sim \eta$
- Evaluate the target density: $\pi(\mathbf{x})=S^{\sharp} \eta(\mathbf{x}):=\eta \circ S(\mathbf{x})|\operatorname{det} \nabla S(\mathbf{x})|$

Samples

Densities

Transport maps characterize distributions

- Transport map S induces a deterministic coupling between a target density π and a reference density η (e.g., standard normal)
- Generate cheap and independent samples: $\mathbf{z} \sim \eta \Leftrightarrow S^{-1}(\mathbf{z}) \sim \pi$
- Evaluate the target density: $\pi(\mathbf{x})=S^{\sharp} \eta(\mathbf{x}):=\eta \circ S(\mathbf{x})|\operatorname{det} \nabla S(\mathbf{x})|$

Samples

Densities

Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement

$$
S(\mathbf{x})=\left[\begin{array}{l}
S_{1}\left(x_{1}\right) \\
S_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
S_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{array}\right]
$$

Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement

$$
S(\mathbf{x})=\left[\begin{array}{l}
S_{1}\left(x_{1}\right) \\
S_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
S_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{array}\right]
$$

(1) Unique under mild assumptions on π and η
(2) Invertibility is guaranteed by one-dimensional monotonicity $\partial_{k} S_{k}>0$
(3) $S^{-1}(\mathbf{z})$ and $\operatorname{det} \nabla S(\mathbf{x})$ are simple to evaluate
(4) Each component S_{k} characterizes one marginal conditional

$$
\pi_{\mathrm{X}}=\pi_{\mathrm{X}_{1}} \pi_{\mathrm{X}_{2} \mid \mathrm{X}_{1}} \cdots \pi_{\mathbf{X}_{d} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{d-1}}
$$

Learning expressive triangular maps from samples

Given target density π and standard Gaussian η,

$$
\begin{aligned}
& \min _{S} \mathrm{D}_{\mathrm{KL}}\left(\pi \| S^{\sharp} \eta\right) \\
\Leftrightarrow & \min _{\left\{s: \partial_{k} s>0\right\}} \mathbb{E}_{\pi}\left[\frac{1}{2} s\left(\mathbf{x}_{1: k}\right)^{2}-\log \left|\partial_{k} s\left(\mathbf{x}_{1: k}\right)\right|\right] \forall k
\end{aligned}
$$

Learning expressive triangular maps from samples

Given target density π and standard Gaussian η,

$$
\begin{aligned}
& \min _{S} \mathrm{D}_{\mathrm{KL}}\left(\pi \| S^{\sharp} \eta\right) \\
\Leftrightarrow & \min _{\left\{s: \partial_{k} s>0\right\}} \mathbb{E}_{\pi}\left[\frac{1}{2} s\left(\mathbf{x}_{1: k}\right)^{2}-\log \left|\partial_{k} s\left(\mathbf{x}_{1: k}\right)\right|\right] \forall k
\end{aligned}
$$

$$
\tilde{\oplus}
$$

Given samples $\left\{\mathbf{x}^{i}\right\}_{i=1}^{n} \sim \pi$, find \widehat{S}_{k} via

$$
\underset{\left\{s: \partial_{k} s>0\right\}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{2} s\left(\mathbf{x}_{1: k}^{i}\right)^{2}-\log \left|\partial_{k} s\left(\mathbf{x}_{1: k}^{i}\right)\right|\right]
$$

Target density approximation: $\widehat{\pi}(\mathbf{x}):=\widehat{S}^{\sharp} \eta(\mathbf{x})$

Triangular maps enable conditional sampling

Consider the triangular map pushing forward $\pi_{\mathrm{Y}, \mathrm{X}}$ to $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$:

$$
S(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
S^{\mathcal{Y}}(\mathbf{y}) \\
S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $S^{\mathcal{Y}}$ pushes forward π_{Y} to $\eta_{\mathbf{Z}_{1}}$
- $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{x | y}}$ to $\eta_{\mathbf{Z}_{2}}$ for any \mathbf{y}

Triangular maps enable conditional sampling

Consider the triangular map pushing forward $\pi_{\mathbf{Y}, \mathbf{X}}$ to $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$:

$$
S(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
S^{\mathcal{Y}}(\mathbf{y}) \\
S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $S^{\mathcal{Y}}$ pushes forward π_{Y} to $\eta_{\mathrm{Z}_{1}}$
- $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{X} \mid \mathbf{y}}$ to $\eta_{\mathbf{Z}_{2}}$ for any \mathbf{y}

Recipe for amortized inference:

To characterize posterior $\pi_{\mathbf{X} \mid \mathbf{y}^{*}} \propto \pi_{\mathbf{y}^{*} \mid \mathbf{X}} \pi_{\mathbf{X}}$ given an observation \mathbf{y}^{*} :

- Simulate from the model: $\mathbf{x}^{i} \sim \pi_{\mathbf{X}}, \mathbf{y}^{i} \sim \pi_{\mathbf{Y} \mid \mathbf{x}^{i}}$
- Estimate $S^{\mathcal{X}}$ from joint samples $\left(\mathbf{x}^{i}, \mathbf{y}^{i}\right) \sim \pi_{X, Y}$
- Simulate $\left.\widehat{S}^{\mathcal{X}}\left(\mathbf{y}^{*}, \cdot\right)^{-1}\right|_{\mathbf{z}^{i}} \sim \pi_{\mathbf{X} \mid \mathbf{y}^{*}}$ for $\mathbf{z}^{i} \sim \eta_{\mathbf{Z}_{2}}$

Related Work: Simulation-based or likelihood-free inference [Papamakarios \& Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019]

Numerical example: image in-painting [Kovachki, B, et al., 2021]

- Goal: Reconstruct image after removing its center section
- Use map to sample from the conditional distribution for the 14×14 center pixels of a 28×28 MNIST handwritten digit
- Estimate conditional mean and variance and classify digit probability

Note: Prior distributions in imaging problems have no analytic form

Will this always work well?

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With $N=50$ samples, we can at best estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean

Will this always work well?

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With $N=50$ samples, we can at best estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean

Takeaway: This approach yields large errors with limited samples

Another approach: compose maps for sampling

For $\pi_{\mathrm{Y}, \mathrm{X}}$ and $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$, consider the triangular map

$$
S(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
S^{\mathcal{Y}}(\mathbf{y}) \\
S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{x} \mid \mathbf{y}}$ to $\eta_{\mathbf{Z}_{2}}$ for any \mathbf{y}
- $S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathrm{Y}, \mathrm{X}}$ to $\eta_{\mathbf{Z}_{2}}$

Another approach: compose maps for sampling

For $\pi_{\mathrm{Y}, \mathrm{X}}$ and $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$, consider the triangular map

$$
S(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
S^{\mathcal{Y}}(\mathbf{y}) \\
S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{x} \mid \mathbf{y}}$ to $\eta_{\mathbf{Z}_{2}}$ for any \mathbf{y}
- $\mathcal{S}^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathrm{Y}, \mathrm{X}}$ to $\eta_{\mathbf{Z}_{2}}$

Another approach: compose maps for sampling

For $\pi_{\mathrm{Y}, \mathrm{X}}$ and $\eta_{\mathbf{Z}_{1}, \mathbf{Z}_{2}}$, consider the triangular map

$$
S(\mathbf{y}, \mathbf{x})=\left[\begin{array}{l}
S^{\mathcal{Y}}(\mathbf{y}) \\
S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
\end{array}\right]
$$

- $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{x} \mid \mathbf{y}}$ to $\eta_{\mathbf{Z}_{2}}$ for any \mathbf{y}
- $\mathcal{S}^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$ pushes forward $\pi_{\mathbf{Y}, \mathrm{X}}$ to $\eta_{\mathbf{Z}_{2}}$

Another approach: compose maps for sampling

The prior-to-posterior map that pushes $\pi_{\mathrm{Y}, \mathrm{X}}$ to $\pi_{\mathrm{X} \mid \mathrm{y}^{*}}$ is

$$
T_{\mathbf{y}^{*}}(\mathbf{y}, \mathbf{x})=S^{\mathcal{X}}\left(\mathbf{y}^{*}, \cdot\right)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
$$

Another approach: compose maps for sampling

The prior-to-posterior map that pushes $\pi_{\mathrm{Y}, \mathrm{X}}$ to $\pi_{\mathrm{X} \mid \mathrm{y}^{*}}$ is

$$
T_{\mathbf{y}^{*}}(\mathbf{y}, \mathbf{x})=S^{\mathcal{X}}\left(\mathbf{y}^{*}, \cdot\right)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})
$$

Stochastic map algorithm:

(1) Estimate $S^{\mathcal{X}}$ using $\left(\mathbf{y}^{i}, \mathbf{x}^{i}\right) \sim \pi_{\mathrm{Y}, \mathrm{X}}$
(2) Evaluate composed map $T_{\mathbf{y}^{*}}(\mathbf{y}, \mathbf{x})$ to approximately sample posterior

Stochastic map algorithm for filtering

Forecast step

(1) Apply dynamics to generate forecast ensemble $\left(\mathbf{x}_{t}^{f}\right)^{i} \sim \pi_{\mathbf{X}_{t} \mid \mathbf{x}_{t-1}^{i}}$

Analysis step

(1) Sample observations $\mathbf{y}_{t}^{i} \sim \pi_{\mathbf{Y}_{t} \mid\left(x_{t}^{f}\right)^{i}}$ using forecast samples
(2) Estimate lower-triangular map S that couples $\pi_{\mathbf{Y}_{t}, \mathbf{X}_{t}}$ and $\mathcal{N}(\mathbf{0}, \mathbf{I})$

$$
S\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)=\left[\begin{array}{l}
S^{\mathcal{Y}}\left(\mathbf{y}_{t}\right) \\
S^{\mathcal{X}}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)
\end{array}\right]
$$

(3) Compose maps $T_{\mathbf{y}_{t}^{*}}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)=S^{\mathcal{X}}\left(\mathbf{y}_{t}^{*}, \cdot\right)^{-1} \circ S^{\mathcal{X}}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)$
(4) Generate analysis ensemble $\mathbf{x}_{t}^{i}=T_{\mathbf{y}_{t}^{*}}\left(\mathbf{y}_{t}^{i}, \mathbf{x}_{t}^{i}\right)$ for $i=1, \ldots, N$

Composed maps are stable for tracking

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With $N=50$ samples, we can at best estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean

Takeaway: Composed maps have stable RMSE with limited samples

Composed maps are stable for tracking

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With $N=50$ samples, we can at best estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean

Takeaway: Composed maps have stable RMSE with limited samples

Numerical details of the stochastic map algorithm

Generalization of the EnKF

- Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{x}_{t}, \mathbf{y}_{t}$, we recover the transformation

$$
T_{\mathbf{y}_{t}^{*}}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)=\mathbf{x}_{t}-\Sigma_{x_{t}, \mathbf{y}_{t}} \Sigma_{\mathbf{y}_{t}}^{-1}\left(\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right)
$$

- Transport maps allow for the gradual introduction of nonlinear terms
- Nonlinear maps $T_{\mathrm{y}_{t}^{*}}$ capture non-Gaussian structure of $\pi_{\mathrm{Y}_{t}, \mathrm{X}_{t}}$

Numerical details of the stochastic map algorithm

Generalization of the EnKF

- Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{x}_{t}, \mathbf{y}_{t}$, we recover the transformation

$$
T_{\mathbf{y}_{t}^{*}}\left(\mathbf{y}_{t}, \mathbf{x}_{t}\right)=\mathbf{x}_{t}-\Sigma_{\mathbf{x}_{t}, \mathbf{y}_{t}} \Sigma_{\mathbf{y}_{t}}^{-1}\left(\mathbf{y}_{t}-\mathbf{y}_{t}^{*}\right)
$$

- Transport maps allow for the gradual introduction of nonlinear terms
- Nonlinear maps $T_{\mathbf{y}_{t}^{*}}$ capture non-Gaussian structure of $\pi_{\mathbf{Y}_{t}, \mathbf{X}_{t}}$

Example map parameterization

- Each component is the sum of nonlinear univariate functions

$$
S_{k}\left(z_{1}, \ldots, z_{k}\right)=\mathbf{u}_{1}\left(z_{1}\right)+\cdots+\mathbf{u}_{k}\left(z_{k}\right)
$$

where $\mathbf{u}_{i}(z)=u_{i, 0} z+\sum_{j=1}^{p} u_{i j} \mathcal{N}\left(z ; \xi_{j}, \sigma_{j}^{2}\right)$ and $\mathbf{u}_{k}\left(z_{k}\right)$ is monotone

Nonlinear maps capture filtering distribution

Lorenz-63 model

- $d=3$ with $\Delta t_{o b s}=0.1$ and fully-observed state
- Observations follow $\mathbf{y}_{t}=\mathbf{x}_{t}+\boldsymbol{\eta}_{t}$ with $\boldsymbol{\eta}_{t} \sim \mathcal{N}(\mathbf{0}, 4 \mathbf{I})$
- Measure root-mean-squared-error $\operatorname{RMSE}(t)=\left\|\mathbf{x}_{t}^{*}-\mathbb{E}\left[\mathbf{x}_{t} \mid \mathbf{y}_{1: t}^{*}\right]\right\|_{2} / \sqrt{d}$
- Compare statistics to a particle filter (PF) with 1 M samples

Improved posterior estimates is also stable with increasing $\Delta t_{o b s}$

Nonlinear maps improve tracking

Lorenz-96 model: chaotic dynamics

- 40 states, 20 observations, and $\Delta t_{o b s}=0.4$ (large!)
- Measure average RMSE (left) over 2000 assimilation cycles
- Parametrize maps with increasing nonlinearity using RBFs

Nonlinear maps also improve estimates of posterior moments

Nonlinear maps better capture uncertainty in true state

- Tracking two marginals of Lorenz-96 system at two assimilation times
- Compare ensemble distribution from EnKF and nonlinear maps

Nonlinear maps better capture uncertainty in true state

- Tracking two marginals of Lorenz-96 system at two assimilation times
- Compare ensemble distribution from EnKF and nonlinear maps

Extension to smoothing

Goal: Characterize full smoothing distribution $\pi_{\mathrm{x}_{1: T} \mid \mathbf{y}_{1: T}}$ or a marginal

- Consider update for all states given a single observation at time T

Ensemble Transport Smoother: Apply stochastic map algorithm on joint states over time:

$$
T_{\mathbf{y}_{T}^{*}}\left(\mathbf{y}_{T}, \mathbf{x}_{1: T}\right)=S^{\mathcal{X}}\left(\mathbf{y}_{T}^{*}, \cdot\right)^{-1} \circ S^{\mathcal{X}}\left(\mathbf{y}_{T}, \mathbf{x}_{1: T}\right)
$$

- Ordering of states in $S^{\mathcal{X}}$ defines different smoothing algorithms
- Exploiting the Markov structure of the states yields sparse maps

Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of target distribution π (encoded by graph) defines functional dependence of S such that $S^{\sharp} \eta=\pi$

Markov structure of 5-dimensional distribution

Markov structure of hidden Markov model

Sparsity of $\partial_{j} S_{k}$

Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]
Conditional independence of target distribution π (encoded by graph) defines functional dependence of S such that $S^{\sharp} \eta=\pi$

$$
\left[\begin{array}{l}
S_{1}\left(x_{1}\right) \\
S_{2}\left(x_{1}, x_{2}\right) \\
S_{3}\left(x_{1}, x_{2}, x_{3}\right) \\
S_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right] \rightarrow \pi\left(x_{1}\right) \quad l \begin{array}{ll}
\rightarrow \pi\left(x_{2} \mid x_{1}\right) & \\
\rightarrow \pi\left(x_{3} \mid x_{1}, x_{2}\right) & =\pi\left(x_{3} \mid x_{2}\right) \\
x_{3} \Perp x_{1} \mid x_{2} \\
\left.x_{2}, x_{3}\right)=\pi\left(x_{4} \mid x_{3}\right) & x_{4} \Perp\left(x_{1}, x_{2}\right) \mid x_{3}
\end{array}
$$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_{T}, \ldots, \mathbf{x}_{1}$
(CI) exploits chain structure: $\mathbf{x}_{1: T-1} \Perp \mathbf{y}_{T} \mid \mathbf{x}_{T}$ and $\mathbf{x}_{1: s-1} \Perp \mathbf{x}_{S+1: T} \mid \mathbf{x}_{S}$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_{T}, \ldots, \mathbf{x}_{1}$
(CI) exploits chain structure: $\mathbf{x}_{1: T-1} \Perp \mathbf{y}_{T} \mid \mathbf{x}_{T}$ and $\mathbf{x}_{1: s-1} \Perp \mathbf{x}_{S+1: T} \mid \mathbf{x}_{S}$ Forwards-in-time: uses the ordering $\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}$
(Cl) exploits chain structure: $\mathbf{x}_{s} \Perp \mathbf{x}_{1: s-2} \mid \mathbf{x}_{s-1}$ for $s \geq 2$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_{T}, \ldots, \mathbf{x}_{1}$
(CI) exploits chain structure: $\mathbf{x}_{1: T-1} \Perp \mathbf{y}_{T} \mid \mathbf{x}_{T}$ and $\mathbf{x}_{1: s-1} \Perp \mathbf{x}_{S+1: T} \mid \mathbf{x}_{S}$ Forwards-in-time: uses the ordering $\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}$
(Cl) exploits chain structure: $\mathbf{x}_{s} \Perp \mathbf{x}_{1: s-2} \mid \mathbf{x}_{s-1}$ for $s \geq 2$

- Empirical results suggest backward-in-time accumulates less errors
- Forwards smoother constrains state trajectories by dynamics

Focusing on backwards smoother

Sequential context: The joint decomposition simplifies

$$
\begin{aligned}
\pi\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}^{*}\right) & =\pi\left(\mathbf{x}_{T} \mid \mathbf{y}_{1: T}^{*}\right) \prod_{s=1}^{T-1} \pi\left(\mathbf{x}_{S} \mid \mathbf{x}_{S+1}, \mathbf{y}_{1: T}^{*}\right) \\
& =\pi\left(\mathbf{x}_{T} \mid \mathbf{y}_{1: T}^{*}\right) \prod_{s=1}^{T-1} \pi\left(\mathbf{x}_{S} \mid \mathbf{x}_{s+1}, \mathbf{y}_{1: s}^{*}\right)
\end{aligned}
$$

- Component S_{s} samples $\pi\left(\mathbf{x}_{s} \mid \mathbf{x}_{s+1}, \mathbf{y}_{1: s}^{*}\right)$
- We estimate S_{s} using filtering ensemble $\left(\mathbf{x}_{s}^{i}, \mathbf{x}_{s+1}^{i}\right) \sim \pi\left(\mathbf{x}_{s}, \mathbf{x}_{s+1} \mid \mathbf{y}_{1: s}^{*}\right)$

Focusing on backwards smoother

Sequential context: The joint decomposition simplifies

$$
\begin{aligned}
\pi\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}^{*}\right) & =\pi\left(\mathbf{x}_{T} \mid \mathbf{y}_{1: T}^{*}\right) \prod_{s=1}^{T-1} \pi\left(\mathbf{x}_{s} \mid \mathbf{x}_{s+1}, \mathbf{y}_{1: T}^{*}\right) \\
& =\pi\left(\mathbf{x}_{T} \mid \mathbf{y}_{1: T}^{*}\right) \prod_{s=1}^{T-1} \pi\left(\mathbf{x}_{s} \mid \mathbf{x}_{s+1}, \mathbf{y}_{1: s}^{*}\right)
\end{aligned}
$$

- Component S_{s} samples $\pi\left(\mathbf{x}_{s} \mid \mathbf{x}_{s+1}, \mathbf{y}_{1: s}^{*}\right)$
- We estimate S_{s} using filtering ensemble $\left(\mathbf{x}_{s}^{i}, \mathbf{x}_{s+1}^{i}\right) \sim \pi\left(\mathbf{x}_{s}, \mathbf{x}_{s+1} \mid \mathbf{y}_{1: s}^{*}\right)$

Generalization of the Ensemble RTS smoother

- Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{y}_{t}, \mathbf{x}_{1: t}$, we recover the transformation

$$
\begin{aligned}
T_{\mathbf{y}_{T}^{*}}\left(\mathbf{y}_{T}, \mathbf{x}_{T}\right) & =\mathbf{x}_{T}-\Sigma_{\mathbf{x}_{T}, \mathbf{y}_{T}} \Sigma_{\mathbf{y}_{T}}^{-1}\left(\mathbf{y}_{T}-\mathbf{y}_{T}^{*}\right) \\
T_{\mathbf{x}_{s+1}^{*}}\left(\mathbf{x}_{s}, \mathbf{x}_{s+1}\right) & =\mathbf{x}_{s}-\Sigma_{\mathbf{x}_{s}, \mathbf{x}_{s+1}} \Sigma_{\mathbf{x}_{s+1}}^{-1}\left(\mathbf{x}_{s+1}-\mathbf{x}_{s+1}^{*}\right), \quad s<t
\end{aligned}
$$

Takeaway: Non-linear transport maps generalize linear smoothers

Nonlinear smoothers capture bimodal distributions

- Sinusoidal state x_{t} with observation $y_{t}=\left|x_{t}+\gamma\right|$ for $\gamma \sim \mathcal{N}(0,0.1)$
- Infer state using random walk model without knowing true dynamics
- Backward smoother is initialized from nonlinear transport filter

A: Filter

Nonlinear smoothers improve state estimation

Lorenz-63 model

A: Lorenz-63 EnTF and EnTS results

B: Lorenz-63 iEnKS results

Tackling high-dimensional inference problems

So far: Transport maps are consistent for sampling non-Gaussian filtering and smoothing distributions without requiring importance weights

Tackling high-dimensional inference problems

So far: Transport maps are consistent for sampling non-Gaussian filtering and smoothing distributions without requiring importance weights

How do we compute transport maps given small ensemble sizes?
(1) Localize estimators with approximate Markov structure
(2) Targeted non-linearity using hybrid nonlinear+linear maps
(3) Restrict inference to relevant low-dimensional subspaces

1. Transport maps are easy to "localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

Inverse covariance matrix for
Lorenz-96 model forecast is sparse

1. Transport maps are easy to "localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

Inverse covariance matrix for
Lorenz-96 model forecast is sparse

1. Transport maps are easy to "localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

- Idea: Regularize the estimation of

Inverse covariance matrix for
Lorenz-96 model forecast is sparse
S by imposing sparsity:

- Heuristic: Let \widehat{S}^{k} depend on neighboring variables $\left(x_{j}\right)_{j<k}$ that are physically close to x_{k} :

$$
\widehat{S}^{k}\left(x_{1}, \ldots, x_{k}\right) \approx \widehat{S}^{k}\left(x_{N(k)}, x_{k}\right)
$$

2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation $y \sim \pi_{Y \mid X_{1}}$

$$
T(y, \mathbf{x})=\left[\begin{array}{c}
T_{1}\left(y, x_{1}\right) \\
\vdots \\
T_{l}\left(x_{1}, \ldots, x_{l}\right) \\
L_{l+1}\left(x_{1}, \ldots, x_{I+1}\right) \\
\vdots \\
L_{d}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right]\left\{\begin{array}{l}
\begin{array}{l}
\text { Nonlinear } \\
\text { maps }
\end{array} \\
\begin{array}{l}
\text { Affine maps: } \\
\text { EnKF update }
\end{array}
\end{array}\right.
$$

Idea: For conditionally Gaussian models, use nonlinear updates T_{k} for state variables $\mathbf{x}_{1: /}$ and use linear updates L_{k} for $\mathbf{x}_{/+1: d}$

2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation $y \sim \pi_{Y \mid X_{1}}$

$$
T(y, \mathbf{x})=\left[\begin{array}{c}
T_{1}\left(y, x_{1}\right) \\
\vdots \\
T_{l}\left(x_{1}, \ldots, x_{l}\right) \\
L_{l+1}\left(x_{1}, \ldots, x_{I+1}\right) \\
\vdots \\
L_{d}\left(x_{1}, \ldots, x_{d}\right)
\end{array}\right]\left\{\begin{array}{l}
\begin{array}{l}
\text { Nonlinear } \\
\text { maps }
\end{array} \\
\begin{array}{l}
\text { Affine maps: } \\
\text { EnKF update }
\end{array}
\end{array}\right.
$$

Idea: For conditionally Gaussian models, use nonlinear updates T_{k} for state variables $\mathbf{x}_{1: /}$ and use linear updates L_{k} for $\mathbf{x}_{/+1: d}$

Special cases:

- $I=1$: Nonlinear T_{1} and keeping all other components affine is related to the rank histogram filter [Andersen 2010]
- With decay in correlation, L_{I+1}, \ldots, L_{d} reverts to an identity map

3. Low-rank updates via an example in turbulent flows

Inference problem:

- States \mathbf{x}_{t} : Positions and strengths of point vortices
- Observations \mathbf{y}_{t} : Pressure observations along airfoil

Truth from CFD/ experiment

Challenges:

- High-dimensional states and observations $d=180$ and $m=50$
- Observations are non-local: \mathbf{y}_{t} is related to all \mathbf{x}_{t} by Poisson equation
- Limited ensemble of size $N=\mathcal{O}(100)$

Low-rank stochastic map filter

Main ideas

- Only part of the state $\mathbf{x}_{r}=U_{r}^{T} \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_{s}=V_{s}^{T} \mathbf{y}$ is relevant to the states

Low-rank stochastic map filter

Main ideas

- Only part of the state $\mathbf{x}_{r}=U_{r}^{T} \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_{s}=V_{s}^{\top} \mathbf{y}$ is relevant to the states
- Consider the posterior approximation at each assimilation step

$$
\widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\widehat{\pi}_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}\left(\mathbf{x}_{r} \mid \mathbf{y}_{s}\right) \pi_{\mathbf{x}_{\perp} \mid \mathbf{X}_{r}}\left(\mathbf{x}_{\perp} \mid \mathbf{x}_{r}\right)
$$

- Approach: Find U_{r}, V_{s} with small r and s from prior ensemble and observation operator such that $\pi_{\mathbf{X} \mid \mathbf{Y}} \approx \widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}$ [B, Marzouk et al., 2022]

Low-rank stochastic map filter

Main ideas

- Only part of the state $\mathbf{x}_{r}=U_{r}^{T} \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_{s}=V_{s}^{\top} \mathbf{y}$ is relevant to the states
- Consider the posterior approximation at each assimilation step

$$
\widehat{\pi}_{\mathbf{X} \mid \mathbf{Y}}(\mathbf{x} \mid \mathbf{y})=\widehat{\pi}_{\mathbf{X}_{r} \mid \mathbf{Y}_{s}}\left(\mathbf{x}_{r} \mid \mathbf{y}_{s}\right) \pi_{\mathbf{x}_{\perp} \mid \mathbf{X}_{r}}\left(\mathbf{x}_{\perp} \mid \mathbf{x}_{r}\right)
$$

- Approach: Find U_{r}, V_{s} with small r and s from prior ensemble and observation operator such that $\pi_{\mathbf{X | Y}} \approx \widehat{\pi}_{\mathbf{X | Y}}$ [B, Marzouk et al., 2022]
- Result: Prior-to-posterior map only acts on low-dimensional variables

$$
T_{\mathbf{y}^{*}}(\mathbf{y}, \mathbf{x})=U_{r} T_{\mathbf{y}_{s}^{*}}^{r}\left(V_{s}^{T} \mathbf{y}, U_{r}^{T} \mathbf{x}\right)+U_{\perp} U_{\perp}^{T} \mathbf{x}
$$

- T_{r} can be linear [Le Provost, B et al., 2022] or non-linear

Low-rank filter is stable for small ensemble sizes

Observations:

- RMSE is stable for small N for different energy ratios
- Adaptive reduced dimensions r, s do not increase over time

Low-rank EnkF is stable with model error
High-fidelity numerical simulation at Reynolds number 1000

Low-rank EnkF is stable with model error
High-fidelity numerical simulation at Reynolds number 1000

Inviscid vortex model with EnKF

Low-rank EnkF is stable with model error

High-fidelity numerical simulation at Reynolds number 1000

Inviscid vortex model with EnKF

Inviscid vortex model with LR-EnKF

Conclusions and outlook

Conclusions and outlook

Central idea: consistent data assimilation using measure transport

- Composed transport maps generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Conclusions and outlook

Central idea: consistent data assimilation using measure transport

- Composed transport maps generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Ongoing work

- Square-root versions of nonlinear filters and smoothers
- Connections to other nonlinear filters, e.g., conjugate transform filter [Chipilski 2023]

Conclusions and outlook

Central idea: consistent data assimilation using measure transport

- Composed transport maps generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Ongoing work

- Square-root versions of nonlinear filters and smoothers
- Connections to other nonlinear filters, e.g., conjugate transform filter [Chipilski 2023]

Main references: arXiv:1907.00389, arXiv:2203.05120, arXiv:2210.17000

Thank You

Supported by the U.S. Department of Energy and NSERC

References I

[1] Jeffrey L Anderson. "A non-Gaussian ensemble filter update for data assimilation". In: Monthly Weather Review 138.11 (2010), pp. 4186-4198.
[2] Ricardo Baptista, Lianghao Cao, Joshua Chen, et al. "Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport". In: arXiv preprint arXiv:2206.11343 (2022).
[3] Ricardo Baptista, Youssef Marzouk, and Olivier Zahm.
"Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective". In: arXiv preprint arXiv:2207.08670 (2022).
[4] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference". In: Proceedings of the National Academy of Sciences 117.48 (2020), pp. 30055-30062.

References II

[5] Nikola Kovachki, Ricardo Baptista, Bamdad Hosseini, and Youssef Marzouk. "Conditional Sampling With Monotone GANs". In: arXiv:2006.06755 (2020).
[6] Mathieu Le Provost, Ricardo Baptista, Youssef Marzouk, and Jeff D Eldredge. "A low-rank ensemble Kalman filter for elliptic observations". In: Proceedings of the Royal Society A 478.2266 (2022), p. 20220182.
[7] Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini. "Sampling via measure transport: An introduction". In: Handbook of Uncertainty Quantification (2016), pp. 1-41.
[8] George Papamakarios and Iain Murray. "Fast epsilon-free inference of simulation models with bayesian conditional density estimation". In: arXiv preprint arXiv:1605.06376 (2016).

References III

[9] Maximilian Ramgraber, Ricardo Baptista, Dennis McLaughlin, and Youssef Marzouk. "Ensemble transport smoothing-Part 1: unified framework". In: arXiv preprint arXiv:2210.17000 (2022).
[10] Maximilian Ramgraber, Ricardo Baptista, Dennis McLaughlin, and Youssef Marzouk. "Ensemble transport smoothing-Part 2: nonlinear updates". In: arXiv preprint arXiv:2210.17435 (2022).
[11] Alessio Spantini, Ricardo Baptista, and Youssef Marzouk. "Coupling techniques for nonlinear ensemble filtering". In: SIAM Review (2022, In press).
[12] Alessio Spantini, Daniele Bigoni, and Youssef Marzouk. "Inference via low-dimensional couplings". In: The Journal of Machine Learning Research 19.1 (2018), pp. 2639-2709.

