Introduction to NCAR HPC Systems For CISL's 2023 SIParCS Cohort and all new NCAR HPC users

Mea Trahan CISL Consulting Services Group mtrahan@ucar.edu

https://arc.ucar.edu/knowledge_base_documentation

May 24, 2023

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 18529

Participant Code of Conduct

Our Pledge

UCAR and NCAR are committed to providing a safe, productive, and welcoming environment for all participants in any conference, workshop, field project or project hosted or managed by UCAR, no matter what role they play or their background. This includes respectful treatment of everyone regardless of gender, gender identity or expression, sexual orientation, disability, physical appearance, age, body size, race, religion, national origin, ethnicity, level of experience, political affiliation, veteran status, pregnancy, genetic information, as well as any other characteristic protected under state or federal law. (*link*)

Expected Behaviors

- · All participants are treated with respect and consideration, valuing a diversity of views and opinions
- Be considerate, respectful, and collaborative
- · Communicate openly with respect, critiquing ideas rather than individuals and gracefully accepting criticism
- Acknowledging the contributions of others
- · Avoid personal attacks directed toward other participants
- Be mindful of your surroundings and of your fellow participants
- Alert UCAR staff and suppliers/vendors if you notice a dangerous situation or someone in distress
- Respect the rules and policies of the project and venue

Welcome!

Thank you for joining us today.

Here are a few things to note before we really get started:

- This tutorial is being recorded and will be available on the CISL website within the next few days.
- If you have questions, please enter them in the chat.
- Please keep your computer audio or phone muted!
- Please turn off your Zoom video (to save bandwidth).

Outline

- HPC Systems
- Systems Accounting Manager
- System Access
- Data Storage Spaces
- Software Environment
- Batch Job Submission
- Data Analysis Resources
- Additional Resources

HPC Systems

NCAR-Wyoming Supercomputing Center

Operated under the sponsorship of the National Science Foundation

8120 Veta Drive

NCAR-Wyoming Supercomputing Center – NWSC

- NCAR Data Center Located in Cheyenne, Wyoming
- Entered service in 2012 to accommodate the NWSC-1 system, Yellowstone, which was too large for the Mesa Lab Data Center in Boulder
- Currently home to NWSC-2 Cheyenne supercomputer
- LEED Gold certified data center
- Green Data Center of the year 2013
- Primarily cooled by natural cooling
- Native landscaping and high efficiency water tower save up to 6 million gallons of water per year
- 10% or more Electrical Power from wind
- Extensive use of sustainable and recycled materials in construction
- Waste heat from HPC machines captured and used for building heat and to melt snow/ice from exterior

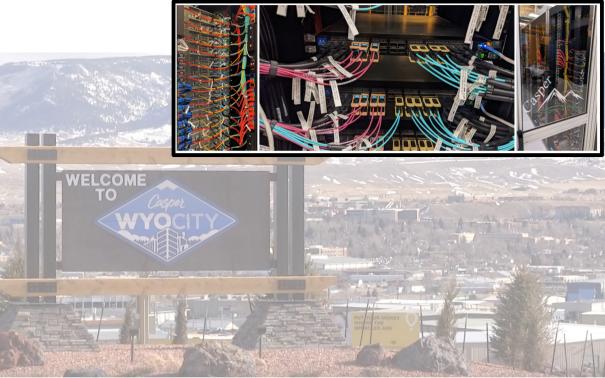
Cheyenne

SGI ICE XA Supercomputer

- 2nd supercomputing system deployed at NWSC
- Entered production January 2017
- Debuted at #21 of the World's Top 500 supercomputers, #100 in November '21

4032 Compute nodes (145,152 total cores)

- Dual socket, 18 cores per socket
- 2.3 GHz Intel Xeon (Broadwell) processors
- 313 TB total system memory, DDR4-2400
 - 64 GB/node, single-rank DIMM, 3,168 nodes
 - 128 GB/node, dual-rank DIMM, 864 nodes
- Mellanox EDR InfiniBand, Partial 9D Enhanced Hypercube Topology


6 login nodes

• Dual socket, 18 cores per socket, 256 GB memory/node

Documentation Home Page:

https://arc.ucar.edu/knowledge_base/70549542

Casper

100 heterogeneous compute nodes of specialized nodes targeting data analysis, visualization, and GPU computing.

- 75 high-throughput computing (HTC) nodes across 2 generations of hardware for small computing tasks using 1 or 2 CPUs.
 - Typical HTC nodes have 384 GB system memory.
- 2 large memory nodes have 1.5 TB system memory.
- 9 nodes for data analysis and visualization jobs.
 - These nodes include a single NVIDIA Quadro GP100 16 GB GPU and 384 GB system memory.
- 10 (+6 additional incoming) nodes feature large-memory, dense GPU configurations to support explorations in machine learning (ML) and general purpose GPU computing.
 - 4 of these nodes feature 4 NVIDIA Tesla V100 32 GB GPUs and 768 GB system memory.
 - 6 of these nodes feature 8 NVIDIA Tesla V100 32 GB GPUs and 1 TB system memory.
 - 6 of these nodes will feature 4 NVIDIA Tesla A100 80 GB GPUs and 1 TB system memory.
- 4 nodes are reserved for Research Data Archive workflows.

Documentation Home Page:

https://arc.ucar.edu/knowledge_base/70549550

Derecho HPE/Cray EX Supercomputer

- 3rd supercomputing system deployed at NWSC
- Production planned for August 2023

2488 CPU + 82 GPU Compute nodes (323,712 total CPU cores)

- AMD EPYCTM 7763 Milan processors
- Cray Slingshot 11 Dragonfly Network Topology
- CPU Nodes:
 - Dual socket, 64 cores per socket
 - 256 GB DDR4 system memory
 - Single 200 Gb/sec Cassini network interface card
- GPU Nodes:
 - Single socket, 64 cores
 - + 4× NVIDIA 1.41 GHz A100 Tensor Core GPUs per node and 600 $^{\rm GB}\!/_{\rm sec}$ NVIDIA NVLink GPU intercont
 - 512 GB DDR4 system memory
 - $4 \times$ 200 ^{Gb}/_{sec} Cassini network interface cards

8 login nodes

• 6 CPU-only, 2 GPU nodes with $2 \times$ NVIDIA A100s each

Documentation Home Page:

https://arc.ucar.edu/knowledge_base/74317833

SAM – Systems Accounting Manager

	Systems A	ccounting Manager	Nati	NCAR is sponso ional Science Foun	red by State					
Project * Resource *	Facility * Charge * User	* Reports * Tools *		User P	reference	es				
Project Code	Project Title Project Administrator	Project Contract Username		Primary G	changes to these settings take effect next business day. Primary Group our primary Unix group applies to all CISL resources.					
Facility Panel Select One V Select One V NCAR Organization Area of Interest Select One		Allocation Type Select One v		Username benkirk	-	Primary Gr	oup Name			
Active Active Inactive P Search Roset	nas Charge Adre V Sen-exempt Insche V Exampt Search				Edit Login Shell You can have a different login shell on each resource accessible to y					
The National Center for	Atmospheric Research is spon	sored by the National Science Foundation. Any colinions, findings and conclusions o	r recommendations expressed	Username	Resource	Shell				
the views of the National Science Foundation.		benkirk	Cheyenne	bash						
Build Date: 2022-04-12 16:56:35 Version: 1.8.10			benkirk	GLADE	bash					
				benkirk	HPC_Futures_Lat					
				benkirk	Laramie	bash				
				Edit						

- Duo login at https://sam.ucar.edu
- Change some user settings (default project, shell, etc...)
- Query information about available projects and remaining allocation balance
- See history of jobs and charges

HPC System Access

Logging in to Cheyenne or Casper

 \bullet Use ssh along with your username to log in

ssh -Y username@cheyenne.ucar.edu

- ssh -Y username@casper.ucar.edu
- Use password+Duo for two-factor authentication
- You will be placed on a login node
 - Cheyenne 6 login nodes: cheyenne [1-6]
 - Casper 2 login nodes: casper-login[1,2]

12/44

HPC System Access: ssh

\$ ssh -Y benkirk@casper.ucar.edu
TokenResponse: # <---- Password here, then Duo Push Authentication</pre>

HPC System Access: ssh

\$ ssh -Y benkirk@casper.ucar.edu
TokenResponse: # <---- Password here, then Duo Push Authentication</pre>

- ssh -Yvv username@cheyenne.ucar.edu for additional debugging output
- For additional 2-factor authentication options see https://arc.ucar.edu/knowledge_base/70549637

HPC System Access: ssh

<pre>\$ ssh -Y benkirk@casper.ucar.edu TokenResponse: # < Password here, then Duo Push Authentication Last login: Tue Apr 19 07:39:20 2022 from 47.160.172.205</pre>

* Welcome to Casper - April 18, 2022

Today in the Daily Bulletin (arc.ucar.edu)
- No system downtimes for week of April 18-22 - Default module updates completed April 11 - Reminder: HPC systems and NWSC maintenance downtime in May
Documentation: https://bit.ly/CISL-user-documentation
Key module commands: module list, module avail, module spider, module help CISL Help: support.ucar.edu 303-497-2400
benkirk@casper-login2(1)\$

Good Citizenship

- Be mindful of your usage on shared resources like the login nodes
- Your activities coexists with those of other users
- CPUs and memory are shared on the login nodes
- Limit your usage to:
 - Reading and writing text/code
 - Compiling smaller programs
 - Performing data transfers
 - Interacting with the job scheduler
- Programs that use excessive resources on the login nodes will be terminated
- Please do not attempt to run sudo on any CISL managed systems
 - If you need help with a system issue, software installation request, etc. please ask for help!
 - Research Computing Help Desk: https://rchelp.ucar.edu

GLADE: GLobally Accessible Data Environment

• File spaces optimized for parallel IO, accessible from all HPC systems

File space	Quota	Backup	Uses
Home /glade/u/home/\$USER	50 GB	Yes	Settings, code, scripts
Work /glade/work/\$USER	1 TB	No	Compiled codes, models
Scratch /glade/scratch/\$USER	10 TB	Purged!	Run directories, temp output. Purged at 120 days
Project /glade/p/entity/project_code	N/A	No	Project space allocations

- \$HOME is the only user file space that is regularly backed up.
 - Snapshots are also available for self directed file restoration. See snap1s
- Check usage vs. quota with gladequota

GLADE: \$HOME: snapls

list \$HOME directory snapshots \$ cd \$HOME && snapls | grep snapshots | sort -r ... Apr 20 10:43 /glade/u/home/.snapshots/20220420-130001/benkirk Apr 20 10:43 /glade/u/home/.snapshots/20220420-120001/benkirk Apr 20 10:43 /glade/u/home/.snapshots/20220420-110001/benkirk Apr 20 08:35 /glade/u/home/.snapshots/20220420-090002/benkirk Apr 19 15:09 /glade/u/home/.snapshots/20220420-060001/benkirk ... Apr 19 15:09 /glade/u/home/.snapshots/20220420-030001/benkirk Apr 19 15:09 /glade/u/home/.snapshots/20220420-000001/benkirk ... Apr 19 15:09 /glade/u/home/.snapshots/20220419-180002/benkirk ... Apr 19 11:08 /glade/u/home/.snapshots/20220419-120001/benkirk Apr 18 08:34 /glade/u/home/.snapshots/20220419-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220418-000001/benkirk Apr 14 15:12 /glade/u/home/.snapshots/20220417-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220416-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220415-000001/benkirk ... Apr 13 19:38 /glade/u/home/.snapshots/20220414-000001/benkirk # peruse a snapshot ...

\$ ls /glade/u/home/.snapshots/20220420-000001/benkirk

GLADE: \$HOME: snapls

list \$HOME directory snapshots \$ cd \$HOME && snapls | grep snapshots | sort -r ... Apr 20 10:43 /glade/u/home/.snapshots/20220420-130001/benkirk Apr 20 10:43 /glade/u/home/.snapshots/20220420-120001/benkirk Apr 20 10:43 /glade/u/home/.snapshots/20220420-110001/benkirk Apr 20 08:35 /glade/u/home/.snapshots/20220420-090002/benkirk Apr 19 15:09 /glade/u/home/.snapshots/20220420-060001/benkirk ... Apr 19 15:09 /glade/u/home/.snapshots/20220420-030001/benkirk Apr 19 15:09 /glade/u/home/.snapshots/20220420-000001/benkirk ... Apr 19 15:09 /glade/u/home/.snapshots/20220419-180002/benkirk ... Apr 19 11:08 /glade/u/home/.snapshots/20220419-120001/benkirk Apr 18 08:34 /glade/u/home/.snapshots/20220419-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220418-000001/benkirk Apr 14 15:12 /glade/u/home/.snapshots/20220417-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220416-000001/benkirk ... Apr 14 15:12 /glade/u/home/.snapshots/20220415-000001/benkirk ... Apr 13 19:38 /glade/u/home/.snapshots/20220414-000001/benkirk # peruse a snapshot ...

\$ ls /glade/u/home/.snapshots/20220420-000001/benkirk

GLADE: gladequota

Space	Used		Quota	%	Full		# Files
/glade/scratch/benkirk	10.53	GiB	10.00	TiB	0.10	%	403423
/glade/work/benkirk	7.30	GiB	1024.00	GiB	0.71	%	143469
/glade/u/home/benkirk	0.77						5364
/glade/u/sampledata	51.82		1024.00				104
/glade/u/cesm-scripts	252.86	GiB	1024.00	GiB	24.69	%	273236
/glade/p/cesm	1155.98	TiB	1200.00	TiB	96.33	%	11456021
Campaign: benkirk (user total)	0.00	GiB		n/a	n/	a	
/glade/campaign/collections/cmip/CMIP6	3800.64	TiB	4096.00	TiB	92.79	%	437645
/glade/campaign/cesm	8758.77	TiB	10240.00	TiB	85.53	%	30425283
/glade/campaign/cgd/cesm	1874.32	TiB	2048.00	TiB	91.52	%	569228
/glade/campaign/cisl/csg	556.75	GiB	23.00	TiB	2.36	%	175

Note: \$HOME quota is reported $2 \times$ due to backup/redundancy implementation.

NCAR Data Storage Spaces

\$ gladequota

Campaign Storage

Campaign Storage

- Resource for storing data on publication timescales
- Multiple access methods:

Data Storage Spaces

I ICAR

- Globus (NCAR Campaign Storage)
- Casper nodes (/glade/campaign/)
- Data access nodes (/glade/campaign/)
- Allocated to and managed by NCAR labs and can be requested by University users

More Details & Request Process: https://arc.ucar.edu/knowledge_base/70549621

Collections

Collections

- Curated data collections available on Cheyenne and Casper to facilitate easy access to research data sets
- RDA: Research Data Archive
 - /glade/collections/rda/

https://rda.ucar.edu/

- CMIP6: Coupled Model Intercomparison Project
 - /glade/collections/cmip/CMIP6/

https://www2.cisl.ucar.edu/computing-data/data/cmip-analysis-platform

21/44

Data Transfer

For short, small transfers use scp/sftp or rsync to transfer files

For *long, large* transfers use **Globus**:

- To use Globus, create a Globus ID if you need an account, and search for NCAR GLADE or NCAR Campaign Storage endpoints
- CISL endpoints currently can be activated for up to 30 days
- Globus has a web interface and a command-line interface
- Globus Connect Personal can manage transfers from your local workstation as well

Available Software

CISL provides a wide range of software tools for use inside the HPC environment:

- Compilers (Intel, GNU, PGI)
- Arm Forge Debuggers / Performance Tools (DDT, MAP)
- MPI Libraries (MPT, Intel MPI, OpenMPI)
- IO Libraries (NetCDF, PNetCDF, HDF5)
- Analysis Languages (Python, Julia, R, IDL, Matlab)
- Convenience Tools (ncarcompilers, parallel, rclone)
- Many more: https://arc.ucar.edu/knowledge_base/70549892

Need something else? Submit a request at https://rchelp.ucar.edu

Environment Modules

- CISL installed software is provided as modules
- Modules provide access to runnable applications (compilers, debuggers, ...) as well as libraries (NetCDF, MPI, ...)
- Modules prevent loading incompatible software into your environment

Note that Cheyenne and Casper each have independent collections of modules!

Module Commands

• module list

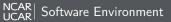
Lists currently loaded modules

module avail

Shows all modules currently available (dynamic, depends on modules loaded)

• module load/unload <software>

Loads or unloads the requested software package into the user environment


- module swap <software> <software/Other.Version> Switch to a different version of a software package
- module purge Removes all loaded modules
- module save/restore <name>
 Saves or loads a collection of modules
- module spider <software>
 Searches for particular software

More Details: https://arc.ucar.edu/knowledge_base/72581272

```
$ module avail
   ----- /glade/u/apps/ch/modulefiles/default/compilers ------
  gnu/9.1.0 intel/19.1.1 (L,D) nvhpc/21.11
  gnu/10.1.0 (D) intel/2022.1
                                    nvhpc/22.1
  intel/18.0.5 nvhpc/21.3
                             pgi/20.4 (D)
   ------/glade/u/apps/ch/modulefiles/default/idep -------
  arm-forge/21.1.1 (D)
                         matlab/R2021b
  arm-reports/19.1 (D)
                         matlab/R2022a
                                           (D)
  arm-reports/20.0.2
                         nano/4.3
     ----- /glade/u/apps/ch/modulefiles/default/intel/19.1.1 -------
  esmf libs/8.2.0 (D)
                      mpt/2.24
  fftw/3.3.8
                      mpt/2.25
                                        (L,D)
  fftw/3.3.8
fftw/3.3.9 (D)
                      ncarcompilers/0.5.0 (L)
  gda1/3.0.4
                      ncl/6.6.2
  grib-api/1.28.0 openmpi/3.1.4
  grib-libs/1.2
                    openmpi/4.0.3
------ /glade/u/apps/ch/modulefiles/default/mpt/2.25/intel/19.1.1 -------
  fftw-mpi/3.3.9 pio/1.10.1 pio/2.5.6d pio/2.5.7
  hdf5-mpi/1.10.8 pio/2.5.4 (D) pio/2.5.6 pnetcdf/1.12.2
  netcdf-mpi/4.8.1 pio/2.5.5 pio/2.5.7d
```

Modules

\$ module list Currently Loaded Modules: 1) ncarenv/1.3 3) ncarcompilers/0.5.0 5) netcdf/4.8.1 2) intel/19.1.1 4) mpt/2.25 \$ which icc && echo \$NETCDF /glade/u/apps/ch/opt/ncarcompilers/0.5.0/intel/19.1.1/icc /glade/u/apps/ch/opt/netcdf/4.8.1/intel/19.1.1/

Modules

```
$ module swap intel intel/2022.1
```

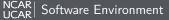
```
Due to MODULEPATH changes, the following have been reloaded:

1) mpt/2.25 2) ncarcompilers/0.5.0 3) netcdf/4.8.1
```

The following have been reloaded with a version change: 1) intel/19.1.1 => intel/2022.1

Modules

28/44


```
$ module swap intel intel/2022.1
```

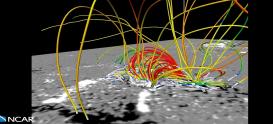
```
Due to MODULEPATH changes, the following have been reloaded:

1) mpt/2.25 2) ncarcompilers/0.5.0 3) netcdf/4.8.1
```

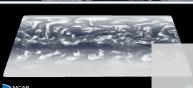
The following have been reloaded with a version change: 1) intel/19.1.1 => intel/2022.1

```
$ which icc && echo $NETCDF
/glade/u/apps/ch/opt/ncarcompilers/0.5.0/intel/2022.1/icc
/glade/u/apps/ch/opt/netcdf/4.8.1/intel/2022.1/
$ module list
Currently Loaded Modules:
  1) ncarenv/1.3   3) ncarcompilers/0.5.0   5) netcdf/4.8.1
  2) intel/2022.1   4) mpt/2.25
```


Changing Your Default Modules

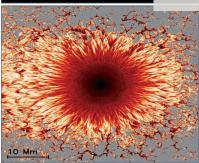

Don't put module load commands in your shell startup files!

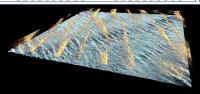
- If you commonly load certain modules, you may wish to have them load automatically when logging onto a cluster
- The proper way to do so is with saved module sets: module load ncl python nco mkl module save default
- You can make multiple named sets and load them using module restore <set>

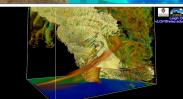

Compiling Software

Considerations when compiling software

- Use **ncarcompilers** module along with library modules (e.g., netcdf) to simplify compiling and linking *(it adds include and link flags for you)*
- When using MPI, make sure you run with the same library with which you compiled your code
 - Strongly recommend loading desired modules inside run scripts, more later
- We strongly recommend you build code on the machine on which you will run
 - Cheyenne and Casper have different CPUs and operating systems






Running Jobs

Accessing Compute nodes via Batch Jobs

Run large tasks on compute nodes using batch jobs

- Most tasks require too many resources to run on a login node
- Schedule these tasks to run on Cheyenne or Casper compute nodes using Altair's PBS
- Jobs request a given number of compute tasks for an estimated wall-time on specified hardware
- Jobs use core-hours, which are charged against your selected project/account
 - Remaining resources are viewable in SAM
- Temporary files are often written by programs set TMPDIR variable to scratch space to avoid job failures

🛆 Altair | PBS Works

Example PBS batch job scripts

33 / 44

```
$ cat basic_mpi.pbs
#!/bin/bash
#PBS -N hello pbs
#PBS -o pbsjob.log
#PBS -A <project_code>
#PBS -i oe
#PBS -k eod
#PBS -q regular
#PBS -1 walltime=00:05:00
### Select 2 nodes with 36 CPUs each for a total of 72 MPI processes
#PBS -1 select=2:ncpus=36:mpiprocs=36:ompthreads=1
### Set temp to scratch
export TMPDIR=/glade/scratch/${USER}/temp && mkdir -p $TMPDIR
module load mpt/2.25 && module list
### Interrogate Environment (optional, personal preference)
env | egrep "PBS | MPI | THREADS" | sort
### Run MPT MPI Program
mpiexec_mpt ./hello_world
```

More Examples:

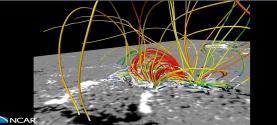
- Cheyenne: https://arc.ucar.edu/knowledge_base/72581486
- Casper: https://arc.ucar.edu/knowledge_base/72581394

PBS Scheduler Interaction

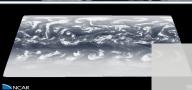
- qsub <script> submit a batch job, see man qsub
- qstat <jobid> query job status
- qinteractive -A <project> ...
 run an interactive job with access to 1 or more CPUs
- qcmd -A <project> -- cmd.exe
 run a command on a single compute node
- qhist search PBS logs for finished jobs, see qhist --help

Example PBS batch job submission

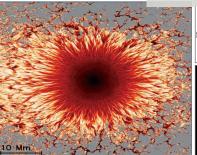
```
# submit a batch script for execution with 'qsub'
$ gsub ./basic pbs.sh
3864501.chadmin1.ib0.cheyenne.ucar.edu
# check the status of my running jobs with 'qstat' (may take up to 10s to appear)
$ gstat -u $USER
Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
3864501.chadmi* benkirk regular hello pbs -- 2 72 -- 00:05 Q
# delete a job from the queue with 'qdel'
$ gdel 3864501
# check out my recently completed jobs with 'qhist'
$ ahist -u $USER
Job ID User
                  Queue Nodes NCPUs Finish RMem(GB) Mem(GB)
                                                                CPU(%)
                                                                       Elap(h)
3865076 benkirk regular 1 36 21-1434
                                                  - 1.0
                                                                92.8
                                                                         0.20
3865065 benkirk regular 1 36 21-1434 - 1.0 97.0 0.20
3865054 benkirk shareex 1 1 21-1433
                                                    - 0.0 0.0 0.01
. . .
# submit a job from cheyenne to run on casper
chevenne$ gsub -g casper@casper-pbs ./largemem casper.sh
```

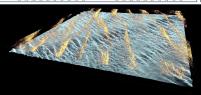

Example PBS batch job scripts

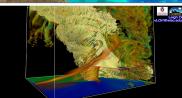
```
$ cat largemem_casper.sh
#PBS -N largemem example
#PBS -o largemem-out.log
#PBS -A <project_code>
#PBS -j oe
#PBS -k eod
#PBS -q casper
#PBS -1 walltime=00:02:00
### Select 24 OpenMP threads on 1 node with a total of 400GB RAM
#PBS -1 select=1:ncpus=24:mpiprocs=1:ompthreads=24:mem=400G
### Set temp to scratch
export TMPDIR=/glade/scratch/${USER}/temp && mkdir -p $TMPDIR
module load ncl/6.6.2 && module list
### Interrogate Environment (optional, personal preference)
env | egrep "PBS | MPI | THREADS" | sort
### do something
echo "Hello from " $(hostname)
./hello world && echo "Done."
```

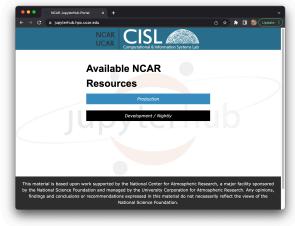

More Examples:

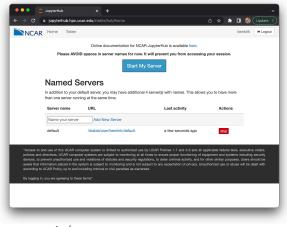
- Cheyenne: https://arc.ucar.edu/knowledge_base/72581486
- Casper: https://arc.ucar.edu/knowledge_base/72581394






Data Analysis



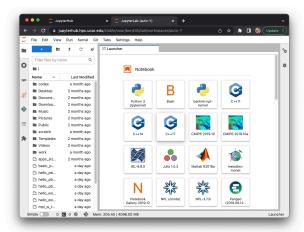

• JupyterHub is a hosted Jupyter Notebook platform inside NCAR's HPC environment that is very useful for data analysis & processing workflows

https://jupyterhub.hpc.ucar.edu/

• JupyterHub is a hosted Jupyter Notebook platform inside NCAR's HPC environment that is very useful for data analysis & processing workflows

https://jupyterhub.hpc.ucar.edu/

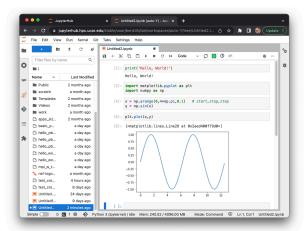
• JupyterHub is a hosted Jupyter Notebook platform inside NCAR's HPC environment that is very useful for data analysis & processing workflows


Online documentation for NCAR Jupyteri-	lub is available here.		
NCAR HPC Jup	yterHub		
Cluster Selection Casper login node		7	
Launch Server			

https://jupyterhub.hpc.ucar.edu/

More Details: https://arc.ucar.edu/knowledge_base/70549913

• JupyterHub is a hosted Jupyter Notebook platform inside NCAR's HPC environment that is very useful for data analysis & processing workflows



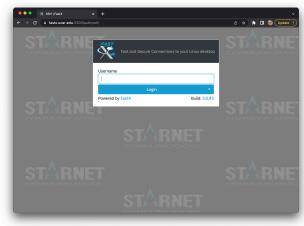
https://jupyterhub.hpc.ucar.edu/

• JupyterHub is a hosted Jupyter Notebook platform inside NCAR's HPC environment that is very useful for data analysis & processing workflows

https://jupyterhub.hpc.ucar.edu/

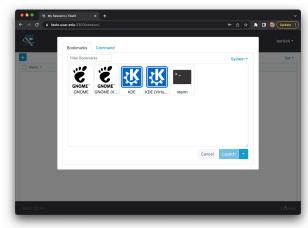
Remote Desktop & Graphical Programs: VNC

VNC can be used to run a remote KDE or GNOME desktop to support graphical applications.


launch 'vncmngr' on casper, matched with a VNC client locally casper\$ vncmgr

CISL recommends TigerVNC or TurboVNC client, see https://arc.ucar.edu/knowledge_base/72581380

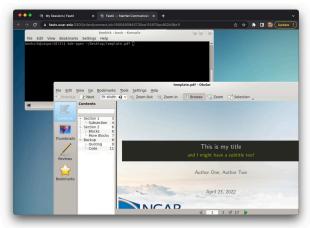
- FastX is a alternate remote desktop service requiring only a web browser, or optional desktop client.
- FastX is only accessible from the NCAR VPN


https://fastx.ucar.edu:3300/

More Details: https://arc.ucar.edu/knowledge_base/72581391

F451

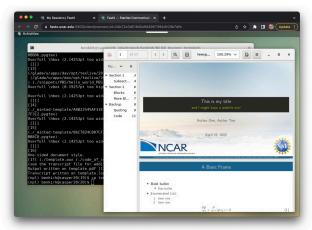
- FastX is a alternate remote desktop service requiring only a web browser, or optional desktop client.
- FastX is only accessible from the NCAR VPN



https://fastx.ucar.edu:3300/

More Details: https://arc.ucar.edu/knowledge_base/72581391

- FastX is a alternate remote desktop service requiring only a web browser, or optional desktop client.
- FastX is only accessible from the NCAR VPN



https://fastx.ucar.edu:3300/

More Details: https://arc.ucar.edu/knowledge_base/72581391

- FastX is a alternate remote desktop service requiring only a web browser, or optional desktop client.
- FastX is only accessible from the NCAR VPN

https://fastx.ucar.edu:3300/

More Details: https://arc.ucar.edu/knowledge_base/72581391

Going Further: Additional Resources & Requesting Help

- Advanced Research Computing Documentation: https://arc.ucar.edu/knowledge_base_documentation
- CISL Help Desk:

https://rchelp.ucar.edu

Submit a ticket to request help with a particular issue.

• HPC Tutorials:

https://www2.cisl.ucar.edu/what-we-do/training-library/hpc-tutorials

In-depth tutorials on numerous topics, including additional details on many of the items covered here today.

- Introduction to NCAR HPC Systems
- Job Scheduling with PBS Pro
- JupyterHub at NCAR
- NCAR Storage Spaces
- Optimizing Resource Use in Scheduled Jobs
- Remote desktop services on Casper
- Starting Casper Jobs with PBS Pro
- Using Globus at NCAR

Best Practices for Support Tickets

When submitting a support ticket please include as much detail as possible to enable quicker resolution:

- Resource name (Cheyenne, Casper, JupyterHub,...),
- Exact error messages and/or paths to error output,
- Batch script location,
- PBS JobID(s) of failed effort,
- Run & source directory paths (ideally UNIX-readable by 'others'),
- Any other pertinent information:
 - Last time this exact workflow was successful, if any (or changes since last success),
 - Troubleshooting steps already attempted, etc. ...
- And please remember to let us know when your issue is resolved!

https://rchelp.ucar.edu

Questions?

Customizing your default environment

bash

```
$ cat /.profile
alias rm"=rm -"i
# Add programs built for each cluster
if [[ $HOSTNAME == cheyenne* ]]; then
export PATH=-/local/ch/bin:$PATH
else
export PATH=-/local/dav/bin:$PATH
fi
# Settings for interactive shells
if [[ $- == *i* ]]; then
PS1="\u@\h:\w> "
fi
```

tcsh

```
$ cat /.tcshrc
alias rm "rm -"i
# Add programs built for each cluster
if ( $HOSTNAME =~ cheyenne* ) then
  setenv PATH ~/local/ch/bin:$PATH
else
  setenv PATH ~/local/dav/bin:$PATH
endif
# Settings for interactive shells
if ( $?prompt ) then
  set prompt = "%n@%m:%~"
endif
```

