XAI and Active Learning for Predicting Winter Weather Precipitation Type

NCAR

Eliot Kim NCAR SIParCS and AIML Intern University of Wisconsin-Madison Mentors: John Schreck and David John Gagne II

July 26th, 2022

XAI and Active Learning for Predicting Winter Weather Precipitation Type

NCAR

Eliot Kim NCAR SIParCS and AIML Intern University of Wisconsin-Madison Mentors: John Schreck and David John Gagne II

July 26th, 2022

Introduction and Motivation

Task

Predict winter weather **precipitation type (p -type)** using **deep learning** with high spatiotemporal accuracy and consistency

Objective 1

Difficult to interpret "black -box" deep learning models \rightarrow Explore **Explainable AI (XAI)** to...

- verify physical consistency of predictions
- motivate further research
- facilitate stakeholder communication

Objective 2

Difficult to predict ice and freezing rain due to biased observations and imbalanced data \rightarrow **Evidential Active Learning** to...

• Increase data efficiency

NCAR

UCAR

• Improve performance for difficult labels

Figure 1: Aftermath of Tennessee ice storm, February 2022

Figure 2: 3D visualization of RAP wind velocity, relative humidity, and reflectivity variables

Background | XAI | Active Learning | Conclusions

Data Sources: Outputs

Data Sources: Outputs

Figure 3: ASOS observations and RAP Temperature, Pressure, Wind Velocity Data for February 2021 NA Winter Storm

INPUT DATA

NCAR

UCAR

RAP (Rapid Refresh): Numerical weather model by NCEP (National Centers for Environmental Prediction) \rightarrow grid cell over each p-type obs. \rightarrow Temperature, Dewpoint, Wind Velocity from 0m to 16500m in atmosphere

Background | XAI | Active Learning | Conclusions

Neural Networks: Overview

Model	Loss Function	Hidden	Nodes	mPING Test Accuracies			
		Layers	per Layer	Rain	Snow	lce	FzRain
Simple MLP	Cross Entropy	1	100	94%	92%	41%	28%
ECHO-Optimized MLP (ECHOMLP)	Cross Entropy	12	105	88%	75%	65%	59%
Simple Evidential MLP (EvidMLP)	Evidential Digamma	1	100	94%	90%	17%	6%

Which input features are important for accurately predicting p-type?

Background | XAI | Active Learning | Conclusions

ĥ

Which input features are important for accurately predicting p-type?

- \rightarrow Permutation Importance
 - Calculate change in prediction accuracy from original model after randomly shuffling each input feature one-by-one
 - Conducted on mPING Simple MLP

Which input features are important for accurately predicting p-type?

- \rightarrow Permutation Importance
 - Calculate change in prediction accuracy from original model after randomly shuffling each input feature oneby-one
 - Conducted on mPING Simple MLP

How does the neural network use input features to compute p-type predictions?

Figure 4: Illustration of Backwards Pass Permutation Importance

Figure 5: SHAP Example for Image Classification. Red = Positive Contribution, Blue = Negative Contribution.

6

Which input features are important for accurately predicting p-type?

 \rightarrow Permutation Importance

NCAR

- Calculate change in prediction accuracy from original model after randomly shuffling each input feature oneby-one
- Conducted on mPING Simple MLP

How does the neural network use input features to compute p-type predictions?

\rightarrow SHAP (SHapley Additive exPlanations)

- Computes contribution of each feature towards each model prediction
- More detailed interpretation of model than Permutation Importance
- Conducted on mPING Simple MLP, mPING ECHOMLP, and ASOS and mPING Simple EvidMLP

Figure 4: Illustration of Backwards Pass Permutation Importance

Figure 5: SHAP Example for Image Classification. Red = Positive Contribution, Blue = Negative Contribution.

XAI Results | mPING Simple MLP

XAI: SHAP Results | mPING ECHO - Optimized MLP

XAI: SHAP Results | mPING Evidential MLP | P -Type

NCAR UCAR

Background | XAI | Active Learning | Conclusions

XAI: Conclusions

Conclusions

- Simple MLP learned high importance near surface
- Complex ECHOMLP and simple EvidMLP learned high importance near surface and near tropopause

Future Work

- Conduct SHAP analysis for ECHO-optimized EvidMLP
- Investigate important variables near tropopause
- XAI methods for clusters of highly correlated variables

Significance

Neural networks learn physical patterns in atmospheric data

 \rightarrow Enables intuitive understanding of complex models by stakeholders

Next Section: Active Learning

Active Learning: Motivation

Background | XAI | Active Learning

Conclusions

Active Learning: Iteration 0

Background | XAI | Active Learning

Background | XAI | Active Learning | Conclusions

NCAR

UCAR

Active Learning Experiments (% of Full)				
Initial Data	Active Data			
ASOS (10%)	ASOS (90%)			
ASOS (100%)	mPING (100%)			
mPING (10%)	mPING (90%)			

Background | XAI | Active Learning

ng | Conclusions

Active Learning: Results | ASOS on mPING

Background | XAI | Active Learning

UCAR

Active Learning: Results | ASOS on mPING

Background | XAI | Active Learning

UCAR

Active Learning: Results | mPING on mPING

UCAR

Background | XAI | Active Learning | Conclusions

Active Learning: Results | mPING on mPING

Background | XAI | Active Learning

UCAR

Active Learning: Conclusions

Conclusions

- Able to improve accuracy for most difficult labels while maintaining performance for other labels
 - Snow, Ice, Freezing Rain accuracy peaks with 20-50% of full dataset
 - Rain performance remains adequate

Future Work

- Conduct ensemble experiments to verify Active Learning results and obtain baseline for comparison
- Incorporate unlabeled data and hand -labeling into Active Learning pipeline
- Conduct XAI at each Active Learning Iteration → Do feature importances change?

Significance

Accurate p-type prediction with simple models and a fraction of full training data

Acknowledgements

Double rainbow while biking down NCAR hill last week!

- Mentors John Schreck and David John Gagne, and AIML scientists (special shoutout to Gabrielle Gantos and Keely Lawrence for invaluable data processing!)
- Virginia Do, Francesgladys Pulido, Jerry Cyccone, and the intern cohort for an unforgettable summer!

Questions and Feedback?

References

Figure 1: <u>https://tennesseelookout.com/2022/02/07/memphis</u> -ice-storm-crystalizes-need-forresilient-reliant-action/

Figure 2: <u>https://www.ncei.noaa.gov/products/weather</u> -climate-models/rapid-refresh-update

Figure 4: https://permutationimportance.readthedocs.io/en/latest/methods.html

Figure 5: https://github.com/slundberg/shap

Figure 6: <u>https://dsgissin.github.io/DiscriminativeActiveLearning/2018/07/05/AL</u> -Intro.html

Additional Sources https://permutationimportance.readthedocs.io/en/latest/

https://journals.ametsoc.org/view/journals/wefo/30/3/waf -d-14-00068_1.xml

https://pubs.acs.org/doi/10.1021/acscentsci.1c00546

Background | XAI | Active Learning

Conclusions

29

NCAR UCAR

Background | XAI | Active Learning | Conclusions

Higher wind velocity associated with lower SHAP values \rightarrow Greater Certainty of p -type prediction!

Higher upper troposphere temperature associated with larger SHAP values \rightarrow Lower Certainty of p -type prediction!

Appendix: Active Learning

ASOS on mPING Active Learning: mPING and ASOS Accuracies 100 80 mPING Accuracy ASOS Accuracy mPING Rain Accuracy ASOS Rain Accuracy 60 mPING Snow Accuracy Accuracy (%) ASOS Snow Accuracy mPING Ice Accuracy ASOS Ice Accuracy --- mPING Fzra Accuracy ASOS Fzra Accuracy 40 mPING Rain Original Accuracy mPING Snow Original Accuracy mPING Ice Original Accuracy mPING Fzra Original Accuracy 20 0 10 20 30 40 50 60 70 80 90 100 0 % of mPING Data Added to Training Data

