
Improving the Speed and Scalability
of the Data Assimilation Research

Testbed

Jiachen (Ed) Liu
Drexel University

Mentors: Helen Kershaw, Jeffrey Anderson

Data assimilation is a process to combine model outputs and
observations to improve model forecasts

1

Model
Forecasts

Observations

Updated
Model

ForecastsAssimilation

AnalysisExample: a temperature forecast
• Model forecast: a three dimensional

atmospheric model which computes
the temperature

• Observations: observed temperature
with a thermometer at a given time

• Assimilation: Generate the
statistically optimal value based on
the forecast and the observation

The Data Assimilation Research Testbed (DART) helps
researchers perform ensemble data assimilation

Ensemble DA with DART

2

Ensemble data assimilation process
can capture the uncertainties inherent
to model forecasts and observations.

DART provides a platform for flexible
and powerful ways to perform
ensemble data assimilation with
different models.

Improving speed and scalability of DART is important for the
future

3

• Although there are modules to utilize parallel computing resources to run DART,
it is still computationally expensive.

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic changes

The speed and scalability of DART with various models are
important for the future

4

• Although there are modules to utilize parallel computing resources to run DART,
it is still computationally expensive.

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic changes

The identification of computational barriers in DART
is essential for the future

• Example code profiling result with arm -forge MAP tool of DART

5

Initial profiling results of DART show that it generally scale
well with increased computational resources

6

• Finite Volume Community Atmosphere Model (CAM-FV) test case

of nodes # of processors Runtime from MAP [s] filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)

2 36 2401.83 70 26.2 3.8

4 36 1071.377 44.5 47.1 8.4

8 36 658.034 24.5 61.8 13.6

10 36 339.992 39.2 34.1 26.6

20 36 285.397 25.8 41.5 32.7

10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20

Initial profiling results of DART show that it generally scale
well with increased computational resources

7

• In general, increased number of nodes and/or number of processors per
node decrease the total runtime.

• However, as the number of nodes is relatively high, the effect of increasing
number of nodes on total runtime reduction decreases.

of nodes # of processors Runtime from MAP [s] filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)

2 36 2401.83 70 26.2 3.8

4 36 1071.377 44.5 47.1 8.4

8 36 658.034 24.5 61.8 13.6

10 36 339.992 39.2 34.1 26.6

20 36 285.397 25.8 41.5 32.7

10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

8

• Atmospheric component of the Model for Prediction Across Scales (MPAS -
ATM)

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

9

• The purpose of this subroutine is to cache the location and indices of the
previous observation so that we can reduce computation time.

• However, these two lines of copying actually consume almost 40% of the
total runtime of DART for this case!

• It turns out that we don’t need these two lines of code to perform the
caching. These are redundant copying of very large arrays.

Additional profiling results revealed redundant caching in
DART consumes significant computational resources

10

• Initial testing with this test case shows that without calling the subroutines,
the computation time reduced from 260 seconds to 64 seconds .

• The problem is now resolved with a pull request at
https://github.com/NCAR/DART/pull/368

The speed and scalability of DART with various models are
important for the future

• Although there are modules to utilize parallel computing resources to run DART,
it is still computationally expensive.

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic

changes

11

A high -resolution assimilation run of MIT General Circulation
Model for the red sea is a computational problem for DART

12

• The MIT General Circulation Model for
the ocean (MITgcm-ocean) is a
numerical model that can compute
parameters related to the ocean.

• This specific run is on a 2000x2000x50
(latitude, longitude, depth) grid.

• DART cannot be run on Cheyenne or on
the extreme memory nodes (4 TB) at
Pittsburgh Supercomputing Center for
this specific case.

Sample output from MITgcm -ocean for the red sea

A high -resolution assimilation run of MIT General Circulation
Model for the red sea is a computational problem for DART

13

• Memory overflow is likely the
problem.

• The grid has land which is not used in
the data assimilation process.

• In the state file, these values are
usually fill values.

• Analys is shows 92% of the grid are fill
values .

Sample output from MITgcm-ocean for the red sea

Egypt

Sudan

Saudi Arabia

DART handles the state information by generating a 1 -D
DART vector

14

• The state might have several variables (salinity, temperature, nitrate
concentration, etc.)

• DART reduces everything into a 1-D DART vector and performs data
assimilation.

• The missing values (land cells in an ocean model) stay in the vector.

S
T

NO3
… … …

Size = Nvar x Nlat x Nlon x Ndepth

The squished state approach can significantly reduce the
size of the state vector

15

S
T

NO3

Squish out all
missing values

…
…

Record dimension
information

…

…
…
…

Lat

Lon

Depth

New Input File

• The new input file does not have missing values at all.
• Additional dimension information is required because we squished the grid.

10.4 GB 988 MB

• If %useful is small, the size of the state vector can be reduced significantly,
so the assimilation might be able to run

The squished state approach can significantly reduce the
size of the state vector

16

… … …

Size = % useful x Nvar x Nlat x Nlon x Ndepth

…
…
…

…
…
…

Lat

Lon

Depth

• The DART model size (number of variables) decreased from ~2.63e9 to
~2.0e8.

The squished state approach can significantly reduce the
size of the state vector

17

… … …

Size = % useful x Nvar x Nlat x Nlon x Ndepth

… … …

Size = Nvar x Nlat x Nlon x Ndepth

The squished state approach improves the speed and
scalability of DART*

18

Medium Case
(500x500x50)

Large Case
(2000x2000x50)

Original 361s N/A

Squished State 150s 1500s

• The computation time for the medium case decreased from 361 seconds to
150 seconds.

• The large case now runs properly.
• The squishing process can be done fairly easily without significant additional

computational resources.

Future Work

19

• Make the squishing process “online” with DART
– The users only need to specify if they want to use the squished state

method.
• Write subroutines which reformulate the squished DART array back into its

original form.

Acknowledgements

20

I would like to thank my mentors Helen and Jeff for their advice throughout the
summer. I also want to thank the DAReS team, the CODE team, and CISL help
desk for their support.

	Slide Number 1
	Data assimilation is a process to combine model outputs and observations to improve model forecasts
	The Data Assimilation Research Testbed (DART) helps researchers perform ensemble data assimilation
	Improving speed and scalability of DART is important for the future
	The speed and scalability of DART with various models are important for the future
	The identification of computational barriers in DART is essential for the future
	Initial profiling results of DART show that it generally scale well with increased computational resources
	Initial profiling results of DART show that it generally scale well with increased computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	Additional profiling results revealed redundant caching in DART consumes significant computational resources
	The speed and scalability of DART with various models are important for the future
	A high-resolution assimilation run of MIT General Circulation Model for the red sea is a computational problem for DART
	A high-resolution assimilation run of MIT General Circulation Model for the red sea is a computational problem for DART
	DART handles the state information by generating a 1-D DART vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach can significantly reduce the size of the state vector
	The squished state approach improves the speed and scalability of DART*
	Future Work
	Acknowledgements

