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Data assimilation is a process to combine model outputs and 
observations to improve model forecasts
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AnalysisExample: a temperature forecast
• Model forecast: a three dimensional 

atmospheric model which computes 
the temperature

• Observations: observed temperature 
with a thermometer at a given time

• Assimilation: Generate the 
statistically optimal value based on 
the forecast and the observation



The Data Assimilation Research Testbed (DART) helps 
researchers perform ensemble data assimilation 

Ensemble DA with DART
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Ensemble data assimilation process 
can capture the uncertainties inherent 
to model forecasts and observations.

DART provides a platform for flexible 
and powerful ways to perform 
ensemble data assimilation with 
different models. 



Improving speed and scalability of DART is important for the 
future
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• Although there are modules to utilize parallel computing resources to run DART, 
it is still computationally expensive. 

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic changes



The speed and scalability of DART with various models are 
important for the future
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• Although there are modules to utilize parallel computing resources to run DART, 
it is still computationally expensive. 

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic changes



The identification of computational barriers in DART 
is essential for the future

• Example code profiling result with arm -forge MAP tool of DART
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Initial profiling results of DART show that it generally scale 
well with increased computational resources
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• Finite Volume Community Atmosphere Model (CAM-FV) test case

# of nodes # of processors Runtime from MAP [s] filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)

2 36 2401.83 70 26.2 3.8

4 36 1071.377 44.5 47.1 8.4

8 36 658.034 24.5 61.8 13.6

10 36 339.992 39.2 34.1 26.6

20 36 285.397 25.8 41.5 32.7

10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20



Initial profiling results of DART show that it generally scale 
well with increased computational resources
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• In general, increased number of nodes and/or number of processors per 
node decrease the total runtime. 

• However, as the number of nodes is relatively high, the effect of increasing 
number of nodes on total runtime reduction decreases. 

# of nodes # of processors Runtime from MAP [s] filter_mod, compute (%) filter_mod, mpi (%) mpi_utilities (%)

2 36 2401.83 70 26.2 3.8

4 36 1071.377 44.5 47.1 8.4

8 36 658.034 24.5 61.8 13.6

10 36 339.992 39.2 34.1 26.6

20 36 285.397 25.8 41.5 32.7

10 4 1184.76 85.2 7.3 7.5

10 16 446.941 60.5 19.4 20



Additional profiling results revealed redundant caching in 
DART consumes significant computational resources
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• Atmospheric component of the Model for Prediction Across Scales (MPAS -
ATM)



Additional profiling results revealed redundant caching in 
DART consumes significant computational resources
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• The purpose of this subroutine is to cache the location and indices of the 
previous observation so that we can reduce computation time.  

• However, these two lines of copying actually consume almost 40% of the 
total runtime of DART for this case! 

• It turns out that we don’t need these two lines of code to perform the 
caching. These are redundant copying of very large arrays. 



Additional profiling results revealed redundant caching in 
DART consumes significant computational resources
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• Initial testing with this test case shows that without calling the subroutines, 
the computation time reduced from 260 seconds to 64 seconds .

• The problem is now resolved with a pull request at 
https://github.com/NCAR/DART/pull/368



The speed and scalability of DART with various models are 
important for the future

• Although there are modules to utilize parallel computing resources to run DART, 
it is still computationally expensive. 

• The focus of this work is to:
1. Identify the computational barriers in DART with code profiling tools
2. Improve the speed and scalability of DART through algorithmic 

changes
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A high -resolution assimilation run of MIT General Circulation 
Model for the red sea is a computational problem for DART
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• The MIT General Circulation Model for 
the ocean (MITgcm-ocean) is a 
numerical model that can compute 
parameters related to the ocean. 

• This specific run is on a 2000x2000x50 
(latitude, longitude, depth) grid. 

• DART cannot be run on Cheyenne or on 
the extreme memory nodes (4 TB) at 
Pittsburgh Supercomputing Center for 
this specific case. 

Sample output from MITgcm -ocean for the red sea



A high -resolution assimilation run of MIT General Circulation 
Model for the red sea is a computational problem for DART
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• Memory overflow is likely the 
problem.

• The grid has land which is not used in 
the data assimilation process.

• In the state file, these values are 
usually fill values. 

• Analys is  shows  92% of the grid are fill 
values . 

Sample output from MITgcm-ocean for the red sea

Egypt

Sudan

Saudi Arabia



DART handles the state information by generating a 1 -D 
DART vector
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• The state might have several variables (salinity, temperature, nitrate 
concentration, etc.)

• DART reduces everything into a 1-D DART vector and performs data 
assimilation. 

• The missing values (land cells in an ocean model) stay in the vector.

S
T

NO3
… … …

Size = Nvar x Nlat x Nlon x Ndepth 



The squished state approach can significantly reduce the 
size of the state vector
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S
T

NO3

Squish out all 
missing values

…
…

Record dimension 
information

…

…
…
…

Lat

Lon

Depth

New Input File

• The new input file does not have missing values at all.
• Additional dimension information is required because we squished the grid.  

10.4 GB 988 MB



• If %useful is small, the size of the state vector can be reduced significantly, 
so the assimilation might be able to run

The squished state approach can significantly reduce the 
size of the state vector
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… … …

Size = % useful x Nvar x Nlat x Nlon x Ndepth 

…
…
…

…
…
…

Lat

Lon

Depth



• The DART model size (number of variables) decreased from ~2.63e9 to 
~2.0e8.

The squished state approach can significantly reduce the 
size of the state vector
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… … …

Size = % useful x Nvar x Nlat x Nlon x Ndepth 

… … …

Size = Nvar x Nlat x Nlon x Ndepth 



The squished state approach improves the speed and 
scalability of DART*
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Medium Case 
(500x500x50)

Large Case 
(2000x2000x50)

Original 361s N/A

Squished State 150s 1500s

• The computation time for the medium case decreased from 361 seconds to 
150 seconds.

• The large case now runs properly.  
• The squishing process can be done fairly easily without significant additional 

computational resources. 



Future Work
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• Make the squishing process “online” with DART
– The users only need to specify if they want to use the squished state 

method.
• Write subroutines which reformulate the squished DART array back into its 

original form. 
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