
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Starting Casper Jobs with PBS Pro

March 30, 2021

Brian Vanderwende
CISL Consulting Services

Casper resources have been significantly expanded

2

• 62 new “high-throughput computing” (HTC) and 2 new high-memory nodes

Scheduling on Casper with PBS Pro

High-throughput computing

For data processing and analysis
workflows that require less

compute and/or more memory
than typical Cheyenne jobs

- 13 nodes with Intel Skylake CPUs
- 62 nodes with Intel Cascade Lake
- 36 CPU cores per node
- 380 GB of memory per node
- 1.6-2 TB of NVMe local SSD

High memory

For CPU-only tasks that require
exceptional amounts of shared

(single-node) memory

- 2 nodes with Intel Cascade Lake
- 36 CPU cores per node
- 1.5 TB of memory per node
- 1.6 TB of NVMe local SSD

Graphics and visualization

For 3D rendering (VAPOR,
ParaView) and graphical

interfaces via remote desktops

- 9 nodes with Intel Skylake CPUs
- NVIDIA Quadro GP100 GPUs
- 36 CPU cores per node
- 380 GB of memory per node
- 2 TB of NVMe local SSD

General-purpose GPU

For development, testing, and
running GPU-enabled models

and also GPU-powered Machine
Learning libraries

- 4 nodes with 4x NVIDIA V100s
 - 2 with Intel Skylake CPUs
 - 2 with Intel Cascade Lake
 - 768 GB of node memory
- 6 nodes with 8x NVIDIA V100s
 - All have Skylake CPUs
 - 1152 GB of node memory
- 2 TB of NVMe local SSD
- 32 GB of GPU RAM; NVLink

4 RDA nodes to support data
processing for the public
Research Data Archive

Slurm ServerPBS Server

PBS Server

Working toward a “single-scheduler environment”

3

Cheyenne

Casper Casper

PBS Server

PBS Server

Cheyenne

Casper

PBS Server

Cheyenne

Casper

NWSC-3

Now April 7 Summer 2021 & Beyond

qsubcasper sbatch/srun qsubcasper qsub

Scheduling on Casper with PBS Pro

Overview of how PBS Pro scheduling works on Casper

4

1. Submit batch or interactive job with qsub, qsubcasper, or execcasper
2. Jobs are initially submitted to the casper queue (a routing queue in PBS

terminology), which is similar to the dav partition in Slurm
3. PBS then conditionally routes the job to an execution queue based on the

specific resources requested
4. Your job will start with a default environment on Casper, so load modules

and set environment variables at the start of your job

Job executes on:

htc largemem vis gpgpu

Submit to:

casper

Scheduling on Casper with PBS Pro

Submitting batch jobs with qsub and qsubcasper

5

#!/bin/bash
#PBS -A PROJ0001
#PBS -N ML_job
#PBS -j oe
#PBS -o mljob.log
#PBS -q casper
#PBS -l walltime=10:00:00
#PBS -l select=1:ncpus=8:mem=40GB:ngpus=1
#PBS -l gpu_type=v100

Application temp data to scratch
export TMPDIR=/glade/scratch/$USER/temp
mkdir -p $TMPDIR

Activate Python environment and run
module load python
ncar_pylib
python ml_driver.py

Store job statistics in log file
qstat -f $PBS_JOBID

Submit from Cheyenne:
qsubcasper ml_script.pbs

Submit from Casper:
qsub ml_script.pbs

• Here, we request a 10-hour job with
8 CPU cores, 1 V100 GPU, and
40 GB of node memory

• This job is submitted to the casper
queue and will execute on the
gpgpu queue

Scheduling on Casper with PBS Pro

PBS has two types of resources - job resources and chunk resources. A job will
consist of one or more chunks. Job resources will apply to all chunks.

Job-level: walltime, gpu_type, place
Chunk-level: ncpus, mpitasks, ompthreads, ngpus, mem, cpu_type

Each job resource is specified in its own directive, while chunk resources are
collectively specified in a select statement.

Job-level: #PBS -l gpu_type=v100
Chunk-level: #PBS -l select=2:ncpus=8:mem=80GB

Resource request fundamentals in PBS Pro

6Scheduling on Casper with PBS Pro

Submitting interactive jobs with execcasper

7Scheduling on Casper with PBS Pro

execcasper provides a simple command for starting an interactive session
• Default resources: 1 core on 1 HTC node, 10 GB of node memory, and a

six-hour walltime
• Unlike Slurm, all resources on the primary node are always assigned to the

shell, and thus are available to any programs you run
• Specify a project using -A flag or by setting DAV_PROJECT env variable
• All qsub flags are supported by execcasper

Set project in shell (tcsh here) and start 2-hour HTC session
cheyenne1$ setenv DAV_PROJECT PROJ0001
cheyenne1$ execcasper -l walltime=02:00:00

Request 18 MPI processes and 4 V100 GPUs and 100GB of memory
casper-login2$ execcasper -l select=1:ncpus=18:mpitasks=18:ngpus=4:mem=100GB -l gpu_type=v100

Quick specification flags to easily customize resources

8Scheduling on Casper with PBS Pro

execcasper also provides custom flags to
quickly modify a single resource without
specifying entire select statement

These two calls to execcasper both request a single core with 20 GB of memory
cheyenne1$ execcasper -A PROJ0001 -l select=1:ncpus=1:mem=20GB
cheyenne1$ execcasper -A PROJ0001 --mem=20GB

--nchunks=N
--ntasks=N
--nthreads=N
--ngpus=1-8
--mem=NGB

Job dependencies in PBS Pro

9

• Dependencies are similar to
Slurm dependencies:
– after = all jobs in list have

started
– afterok, afternotok = all

jobs in list have
succeeded/failed

– afterany = all jobs in list
have exited with any status

• Not yet supported between
Cheyenne and Casper jobs

Scheduling on Casper with PBS Pro

Example using Bash syntax
Submit initial jobs to PBS and capture job ids
casper$ J1=$(qsub run_ens1.pbs)
casper$ J2=$(qsub run_ens2.pbs)

Submit secondary job with success conditions
casper$ qsub -W depend=afterok:$J1:$J2 run_proc.pbs

#!/bin/bash
#PBS -N GPU_model
#PBS -A PROJ0001
#PBS -l walltime=10:00:00
#PBS -q casper
#PBS -l select=1:ncpus=8:mem=100GB:ngpus=4
#PBS -l gpu_type=v100

Run model last in script to use correct exit code
mpirun ./model.exe

Unlike shared jobs on Cheyenne, resources are exclusive

10

• Any CPUs and node memory that you request are reserved for exclusive
use by your job; no other jobs can access those resources

• The V100 GPUs are also scheduled for exclusive use
– NVIDIA’s multi-instance GPU is not supported by PBS at this time

• The GP100 GPUs are shared among all jobs on a visualization node
• Exclusive use means that your job is restricted to the resources you request

– Caveat: NVMe swap space allows your job to proceed even if you run
out of RAM at the cost of reduced performance

Scheduling on Casper with PBS Pro

Summary of per-user resource limits for each job class

11

Job limits are intended to ensure short dispatch times and a fair distribution of
Casper’s resources.

Scheduling on Casper with PBS Pro

Job Category Job Characteristics Concurrent Use Limits

htc mem <= 361 GB; ncpus <= 36
ngpus = 0

<= 468 CPUs
<= 4680 GB memory

largemem mem > 361 GB; ncpus <= 36
ngpus = 0

Up to 5 jobs eligible
(more can be queued)

vis gpu_type = gp100 1-2 GPUs in use by running jobs

gpgpu gpu_type = v100; ngpus > 1 1-16 GPUs in use by running jobs

Virtual desktop options: FastX and vncmgr

12

Graphically intensive applications are best run in a virtual desktop using either
FastX or TurboVNC via vncmgr:

Scheduling on Casper with PBS Pro

• Login-type KDE desktop
session with low resource
requirements -> use FastX
– Can submit PBS Pro jobs

from desktop session to
access more resources

• Rendering or other resource
intensive task in remote
desktop -> use vncmgr

JupyterHub will use PBS for all
batch sessions by April 7

13Scheduling on Casper with PBS Pro

Querying and deleting active PBS jobs on Casper

14

• Delete pending or running jobs using qdel/qdelcasper <jobid>
• Show active jobs using the qstat command (cached every 10 seconds)

– Can show jobs running on opposite server using @server notation
• Only supported for certain options (-u,-w,-s,-n,-x)

Scheduling on Casper with PBS Pro

Show current Casper jobs with nodes assigned to running jobs (-n option)
casper-login1$ qstat -n

Show my (-u) active and recently completed (-x) jobs on Casper from Cheyenne login node
cheyenne1$ qstat -u $USER -x @casper
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
24248.casper-p* vanderwb htc STDIN 74786 2 4 20gb 06:00 F 00:02
24293.casper-p* vanderwb htc STDIN 80888 1 1 10gb 06:00 F 00:00
24295.casper-p* vanderwb vis vncs-defa* 189039 1 1 10gb 04:00 F 00:05

Getting historical records for past PBS jobs

15

PBS Pro does not provide an equivalent to Slurm’s sacct command, so CISL
maintains the qhist command on Cheyenne and Casper to query past jobs.

qhist [-d DAYS] [-p START-END] [-u USER] [-j JOBID] …

By default, qhist outputs all jobs from the current day, but has arguments to
change time period and filter jobs by user, project, queue and more.

qhist allows you to quickly query CPU and memory usage of past jobs!

Scheduling on Casper with PBS Pro

qhist will show records from the current server

16Scheduling on Casper with PBS Pro

Query my jobs from past week on Casper and find top 5 by memory use
casper-login1$ qhist -u $USER -p 20210322-20210326 -s memory | head -n 6
Job ID User Queue Nodes NCPUs NGPUs Finish Mem(GB) CPU(%) Elap(h)
15259 vanderwb htc 1 1 0 23-1942 10.0 2.0 0.08
15268 vanderwb htc 1 1 0 23-1957 5.0 4.0 0.06
15337 vanderwb htc 1 1 0 23-2043 5.0 3.0 0.08
15346 vanderwb htc 1 1 0 23-2059 5.0 2.0 0.20
15057 vanderwb htc 1 1 0 23-1523 1.0 12.0 0.20

Get long-form output from the top job from above list
casper-login1$ qhist -p 20210323 -j 15259 -l
15259.casper-pbs
 User = vanderwb
 ...
 Walltime (h) = 6.00
 Elapsed (h) = 0.08
 Job Name = STDIN
 Exit Status = 0
 Account = SCSG0001
 Resources = 1:ncpus=1:mpiprocs=1
 Node List = crhtc62

Command and interface migration from Slurm to PBS

17

Slurm commands
sbatch
salloc/srun
squeue
scancel
sacct

Slurm MPI support
Open MPI <= 4.0.5

Scheduling on Casper with PBS Pro

PBS Pro commands
qsub
qsub -I
qstat
qdel
qhist

PBS MPI support
Open MPI >= 4.1.0
MVAPICH2

Migrated support
JupyterHub (April 7)
FastX
vncmgr (TurboVNC)
Accounts

Changes mostly invisible to
end users!

Common mistakes when submitting to Casper

18

• Using “qsub” on Cheyenne when attempting to submit to Casper
– Will get an “Unknown queue” message at submission time

• Requesting an invalid resource amount or combination (e.g., ngpus=2
and gpu_type=gp100)
– Depending on specific request, may be rejected at submission time or

job may end up in hold state (verify job is eligible after new submission)
• Requesting less node memory than application requires

– Job is unlikely to fail because of NVMe “swap space”, but performance
will likely decrease significantly when RAM is exhausted

• Loading Cheyenne modules (e.g., mpt) in Casper script
– The job will fail at runtime with an Lmod error

Scheduling on Casper with PBS Pro

Getting assistance from the CISL Help Desk

https://www2.cisl.ucar.edu/user-support/getting-help
• Walk-in: ML 1B Suite 55
• Web: http://support.ucar.edu
• Phone: 303-497-2400

Specific questions from today and/or feedback:
• Email: vanderwb@ucar.edu

19Scheduling on Casper with PBS Pro

https://www2.cisl.ucar.edu/user-support/getting-help
http://support.ucar.edu
mailto:vanderwb@ucar.edu

