C 7 M

Arm HPC Solution

A partner enabled ecosystem

Srinath Vadlamani NCAR MultiCore Workshop (MC8), Boulder CO, Sept 18019, 2018

HPC Strategy

Mission: Enable the world's first Arm supercomputer(s)

Strategy: Enablement + Co-Design + Partnership

Building Blocks

Enablement

- Address gaps in computational capability and data movement within Architecture
- Seed the software ecosystem with open source support for Armv8 and SVE libraries, tools, and optimized workloads
- Provide world class tools for compilation, analysis, and debug at large scale.

Co-Design

- Work with key end-customers in DoE, DoD, RIKEN, and EU to design balanced architecture, uArchitecture and SoCs based on real-world workloads, not benchmarks.
- Develop simulation and modelling tools to support co-design development with endcustomers, partners, and academia.

Partnership

- Work with Architecture partners to bring optimized solutions to market quickly.
- Work with ATG & uArchitecture design teams to steer future designs to be more relevant for HPC, HPDA, and ML
- Work with key ISVs to enable mid-market

Software Tools

But to engage with customers, we need a reason...

Arm Allinea St	udio	Develop and run on today's hardware		
Arm Compiler for HPC	Arm Performance Libraries	Arm Forge Professional	Arm Performance Reports	
Linux user space compil for HPC applications	er BLAS, LAPACK and FFT	Multi-node interoperable profiler and debugger	Interoperable application performance insight	

Key benefits:

- Get the best performance out of Arm hardware
- Reduce the time to develop codes
- Improve productivity by speeding up applications

and, importantly...

- Migrate from x86 to aarch64 faster with portable tools
- Forge/PR licences are a great justification to stay close to our end-users

Arm Compiler – Building on LLVM, Clang and Flang projects

Open Architecture implies other software tool options.

- GNU-gcc
 - including internal Arm developers
- LLVM-clang
 - including internal Arm developers
 - All enhancements to LLVM for the Arm HPC compilers are pushed upstream
 - Using PGI-flang as base for armflang
- Cray
 - Complete, HPC-optimized software stack including the Cray Linux[®] Environment and Cray Programming Environment. Cray's CCE compiler and programming environment are enhanced to achieve improved performance from the Cavium ThunderX2 processors.
 - I assume craypat is a functioning profiler on aarch64
- Fujitsu

Hardware options

Cavium CN99XX - 1st member of

- 24/28/32 Custom ARMv8 cores
- Fully Out-Of-Order (OOO) Execution
- IS and 2S Configuration
- Up to 8 DDR4 Memory Controllers
- Up to 16 DIMMs per Socket
- Server Class RAS features
- Server class virtualization
- Integrated IOs
- Extensive Power Management

 2^{nd} gen ARM server SoC Delivers 2-3X higher performance

Fujitsu Post-K specs

Architecture Features

- Armv8.2-A (AArch64 only)
- SVE 512-bit wide SIMD
- 48 computing cores + 4 assistant cores*

*All the cores are identical

- HBM2 32GiB
- Tofu
 6D Mesh/Torus
 28Gbps x 2 lanes x 10 ports
- PCle Gen3 16 lanes

7nm FinFET

- 8,786M transistors
- 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

Fujitsu Post-K attributes for HPC applications.

Features

Per-lane predication

Fault-tolerant speculative vectorization

Gather-load and scatter-store

Horizontal and serialized vector operations

HPC-focused instructions e.g. Reciprocal inst., Math. acceleration inst., etc.

Scalable vector length

Advantages

High vectorization rate

Wider SIMD (512-bit wide for Post-K)

Efficient utilization of vector e.g. Gather/Scatter for packed 32-bit FP, Packed SIMD for 1-, 2-, 4- and 8-byte integer

Highly optimized executables

Binary portability between different vector-length CPUs

ArmV8 and HPC

Scalable Vector Extension

- Not an extension to NEON
- advanced loads & stores

- white-paper: https://developer.arm.com/-/media/developer/developer/developers/hpc/white-papers/a-sneak-peek-into-sve-and-vla-programming.pdf?revision=c702475b-6325-41a2-b3d3-d9f244028841
 - Francesco Petrogalli
- Vector Length Agnostic (VLA) programming because of predication
 - can vectorize loops with control flow in the loop body
- Run SVE code on non-sve platforms with ARMIE: <u>https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator</u>
- SC'18 workshop
- 12 © 2017 Arm Limited

Applications on Aarch64

Bristol via GW4 is an active co-designer.

University of BRISTOL

) Isambard

Isambard system specification (red = new info):

5

- Cray "Scout" system XC50 series
 - Aries interconnect
- 10,000+ Armv8 cores
 - Cavium ThunderX2 processors
 - 2x 32core @ >2GHz per node
- Cray software tools
- Technology comparison:
 - x86, Xeon Phi, Pascal GPUs
- Phase 1 installed March 2017
- The Arm part arrives early 2018

@simonmcs http://gw4.ac.uk/isambard/

bristol.ac.uk

I.K.Brunel 1804-1859

Cavium ThunderX2, a seriously beefy CPU

- 32 cores at up to 2.5GHz
- Each core is 4-way superscalar, Out-of-Order
- 32KB L1, 256KB L2 per core
- Shared 32MB L3
- Dual 128-bit wide NEON vectors
 - Compared to Skylake's 512-bit vectors, and Broadwell's 256-bit vectors
- 8 channels of 2666MHz DDR4
 - Compared to 6 channels on Skylake, 4 channels on Broadwell
 - AMD's EPYC also has 8 channels

http://gw4.ac.uk/isambard/

The orange is different from the apples.

Processor	Cores	Clock speed GHz	FP64 TFLOP/s	Bandwidth GB/s
Broadwell Skylake (Gold)	$\begin{array}{c} 2\times22\\ 2\times20 \end{array}$	2.2 2.4	1.55 3.07	154 256
Skylake (Platinum) Knights Landing ThunderX2	$\begin{array}{c} 2 \times 28 \\ 64 \\ 2 \times 32 \end{array}$	2.1 1.3 2.2	3.76 2.66 1.13	$256 \\ \sim 490 \\ 320$

BDW 22c	Intel Broadwell E5-2699 v4, \$4,115 each (near top-bin)
SKL 20c	Intel Skylake Gold 6148, \$3,078 each
SKL 28c	Intel Skylake Platinum 8176, \$8,719 each (near top-bin)
TX2 32c	Cavium ThunderX2, <u>\$1,795</u> each (near top-bin)

http://gw4.ac.uk/isambard/

Memory bound apps do perform better on TX2.

Performance on mini-apps

Performance on heavily used applications from Archer

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard

S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

What is the cost for your performance?

Performance per Dollar: mini-apps

This is highly subjective to the market and procurement deals.

No single compiler is the best.

Benchmark	ThunderX2	Broadwell	Skylake	Xeon Phi	 University of BRISTOL
STREAM	GCC 7	Intel 18	Intel 18	Intel 18	
CloverLeaf	Arm 18.2	Intel 18	Intel 18	Intel 18	
TeaLeaf	GCC 7	Intel 18	Intel 18	Intel 18	
SNAP	CCE 8.6	Intel 18	Intel 18	Intel 18	
Neutral	GCC 7	Intel 18	Intel 18	Intel 18	
CP2K	GCC 7	GCC 7	GCC 7		
GROMACS	GCC 7	GCC 7	GCC 7		
NAMD	Arm 18.2	GCC 7	Intel 18		
NEMO	CCE 8.7	CCE 8.7	CCE 8.7		
OpenFOAM	GCC 7	GCC 7	GCC 7		
OpenSBLI	CCE 8.7	Intel 18	Intel 18		
UM	CCE 8.6	CCE 8.5	CCE 8.6		
VASP	CCE 8.7	CCE 8.6	CCE 8.6		

The HPC community has options to influence Arm

- Arm has made the effort to <help> port many applications:
 - <u>https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages</u>
 - Please contribute and enhance ported packages during your campaigns
 - support-hpc-sw@arm.com with concerns
 - <u>https://spack.io</u>
 - HPC deployment package manager
 - patch in for IP review for armhpc compiler
 - ?standardization of benchmarks?
 - SVE (starting with 512 bit vector units) will bring more performance to the table
 - compiler implementations will always be advancing

Arm help

HPC Infrastructure Tools Group

Worldwide HPC knowledge experts in cross-platform enablement and performance optimization

Teams:

- Professional Services
- Commercial and open-source SW engineering
- HPC Tools
 Development, training and support

Offerings:

HPC application modernization, porting, and optimization:

- Identify and resolve scalability bottlenecks.
- Optimize application data movement and vectorization.

Performance analysis tools and techniques:

- Deploy and support software tools from Arm and the Arm community.
- Documentation, training, tutorials, and workshops.

Knowledge transfer and Arm adoption:

• Publications, presentations, and community participation.

Thank You! Danke! Merci! 谢谢! ありがとう! **Gracias!** Kiitos! 감사합니다 धन्यवाद

arm