
Performance Optimization

Techniques for Accelerating

WRF Physics Codes on Micro-

architectures

Intel Parallel

Computing Center

Presented by:

T.A.J.Ouermi, Mike Kirby, Martin Berzins

1

Motivation

➢Faster weather physics for operational Navy

Environmental Prediction sysTem Utilizing the

NUMA corE (NEPTUNE)

➢Target architectures: Micro-acrchitectures

➢Intel Knights Landing (KNL),

➢Intel Haswell

➢Portability with OpenMP

2

NEPTUNE

NEPTUNE

Dynamics Physics

WSM6GFS

3

Physics Optimization

Challenges

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

Sea

Land

WRF single-moment 6-class
Microphysics Scheme (WSM6)

➢Large loops with

many conditional not

favorable for

parallelism.

➢Difficult to optimize

with transition between

many regimes.

4

Vertical Physics Advantage

Vertical Physics representation

➢Dependencies within

columns.

➢No dependencies

between columns.

5

Identify

Bottlenecks

Apply Findings

to Physics

Schemes

Standalone

Experiments

➢Identify bottlenecks

➢Wall Clock, Vtune.

➢Advisor, optrpt.

➢Standalone experiments

➢Apply findings to physics

Methodology

6

j →j →

SOA 1 SOA 2

Chunk size = multiple of vector length

A B

Structures of Arrays (SOA)

7

Transpose

!$OMP DO

do j=1,km

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do

!$OMP DO

do i=1,im

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do

j →

Thread id = j

i→

Thread id = i

8

Vectorization

!$OMP DO

do j=1,km

!$OMP SIMD

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do

!$OMP DO

do i=1,im

!$OMP SIMD

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do

j →

Thread id = j

i→

Thread id = i

9

➢1 socket

➢64 cores

➢4 threads per core

➢2VPU per core (AVX-512)

➢Clock of 1.5 Ghz

➢L1 32k

➢L2 1024k

➢MCDRAM 16GB

Architectures

➢4 sockets

➢18 cores per socket

➢2 threads per core

➢VPU (AVX-2)

➢Clock of 2.5 Ghz

➢L1 32k

➢L2 256K

➢L3 46MB

Intel Knights Landing(KNL) Intel Xeon CPU E-7-8890

(Haswell)

10

➢Transpose data.

➢Thread-local SOA with different chunk sizes.

➢Scheduling: dynamics vs static.

➢ Thread configurations.

➢Simplify complex code by removing conditionals

and nested code for vectorization.

Experiments

11

Threads

Speed-up

Transpose vs

SOA

➢Identify suitable

chunk size.

➢Thread-local SOA

2x faster than

transpose.

T
im

e
(s

e
c
)

Threads

12

KNL

KNL

WSM6 Chunk

Size

➢Chunk = 32 for

haswell.

➢Chunk = 64 for

KNL.

Threads

T
im

e
(s

e
c
)

Threads

T
im

e
(s

e
c
)

13

Haswell

KNL

➢Dynamic scheduling

better in both cases.

➢70x on KNL and

26x on Haswell.

➢FLAT better results

than CACHE on KNL.

➢Haswell peak at 32

threads and KNL at

64 threads

WSM6 Results

Threads

S
p
e
e
d
-u

p
s

Threads

S
p

e
e

d
-u

p
s

14

Haswell

KNL

GFS Phys.

Chunk Size

➢Chunk = 8, 12 for

haswell.

➢Chunk = 16,8 for

KNL.

Threads

T
im

e
(s

e
c
)

Threads

T
im

e
(s

e
c
)

15

Haswell

KNL

GFS Phys.

Results

➢Scale up to 18x with

72 threads on

Haswell.

➢Scale up to 27x with

128 threads on KNL.

➢Static scheduling

performs better than

dynamics.

S
p
e
e
d

-u
p
s

Threads

S
p
e
e
d

-u
p
s

Threads
16

Haswell

KNL

GFS Rad.

Chunks

➢Chunk = 8, 12 for

haswell.

➢Chunk = 16,8 for

KNL.

Threads

T
im

e
(s

e
c
)

Threads

T
im

e
(s

e
c
)

17

Haswell

KNL

GFS Rad.

Results

➢Scale up to 30x 72

threads on Haswell.

➢Scale up to 23x 64

threads on KNL.

➢Dynamics

scheduling performs

better.

S
p
e
e
d

-u
p
s

Threads

S
p
e
e
d
-u

p
s

Threads 18

Haswell

KNL

Discussion

➢Better runtimes with haswell because more cores

and faster clock.

19

Discussion

➢Better runtimes with haswell because more cores

and faster clock.

➢Better speed-ups with KNL because better

utilization of threads.
20

Conclusion and Future Work

➢Code modification to use thread-local SOA.

➢Identifying the appropriate chunk size to maximize

work per thread and locality.

➢Future Directions

➢Better understanding of how to improve peak

performance.

➢Study of MPI+OpenMP on larger test cases in context of

NEPTUNE.

21

Thank you!!

Questions?

E-mail: touermi@sci.utah.edu
22

➢Acknowledgements:

➢Intel Parallel Computing Center.

➢Alex Reinecke, Kevin Viner (NRL), John Michelakes

(UCAR)

mailto:touermi@sci.utah.edu

Structure of Arrays (SOA)

...

SOA chunk size.

Corresponds to parts of i

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example

23

Complex Loop Parallelization

•No conditional 9.7x

•No function calls 30x

•Vectorization 41x

do k=kte,kts-1

do i=its,ite

…

if(t(i,k).gt.t0c)then

…

w(i,k) = venfac(p(i,k), t(i,k), den(i,k))

if(qrs(i,k,2).gt.0)then

…

psmlt(i,k)=xka(t(i,k), den(i,k)…

end if

if(qrs(i,k,2).gt.0)then

psmlg(i,k)=xka(t(i,k), den(i,k)…

…

end if

end if

end do

end do

Loop 12 from WSM6 24

1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do

1D case

Number of threads

Speed-up

25

1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do

1D case with large array sizes

Number of threads

Speed-up

26

2D Arrays Experiments

2D case

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do
27

2D Arrays Experiments

2D case with large array sizes

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do
28

Chunk Size

Number of threads

Time(ms)

29

KNL Architecture

•MCDRAM:16GB, High BW

•Peak 3 teraflops double

precision

•512 bit vectors

Tile

30

MCDRAM & Configurations

Cores+L2
MCDRAM

(as cache)
DDR

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

MCDRAM

(as cache)

● Cache Mode

○ No source changes needed

○ Misses are expensive (higher

latency)

● Flat Mode

○ MCDRAM mapped to physical

address

■ use numactl -- for

configuration

○ Exposed as NUMA node

● Hybrid Mode

○ Combination of flat and cache

mode

■ eg: 8GB cache and 8GB flat
31

