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Motivation

➢Faster weather physics for operational Navy 

Environmental Prediction sysTem Utilizing the 

NUMA corE (NEPTUNE)

➢Target architectures: Micro-acrchitectures

➢Intel Knights Landing (KNL), 

➢Intel Haswell

➢Portability with OpenMP
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NEPTUNE

NEPTUNE

Dynamics Physics

WSM6GFS
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Physics Optimization 

Challenges

Water vapor

Cloud water Cloud ice

Rain Snow

Grauple

Sea

Land

WRF single-moment 6-class 
Microphysics Scheme (WSM6)

➢Large loops with 

many conditional not 

favorable for 

parallelism.

➢Difficult to optimize 

with transition between 

many regimes.
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Vertical Physics Advantage

Vertical Physics  representation

➢Dependencies within 

columns.

➢No dependencies 

between columns.
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Identify 

Bottlenecks

Apply Findings 

to Physics 

Schemes

Standalone 

Experiments

➢Identify bottlenecks

➢Wall Clock, Vtune.

➢Advisor, optrpt.

➢Standalone experiments

➢Apply findings to physics

Methodology
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j →j →

SOA 1 SOA 2

Chunk size = multiple of vector length

A B

Structures of Arrays (SOA)
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Transpose

!$OMP DO

do j=1,km

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do 

!$OMP DO

do i=1,im

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do 

j →

Thread id = j

i→

Thread id = i
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Vectorization

!$OMP DO

do j=1,km

!$OMP SIMD

do i=1,im

a(i,k)=b(i,k)-c(i,k)

end do

end do 

!$OMP DO

do i=1,im

!$OMP SIMD

do j=1,km

a(k,i)=b(k,i)-c(k,i)

end do

end do 

j →

Thread id = j

i→

Thread id = i
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➢1 socket  

➢64 cores

➢4 threads per core

➢2VPU per core (AVX-512)

➢Clock of 1.5 Ghz

➢L1 32k 

➢L2 1024k 

➢MCDRAM 16GB

Architectures

➢4 sockets 

➢18 cores per socket

➢2 threads per core

➢VPU (AVX-2)

➢Clock of 2.5 Ghz

➢L1 32k 

➢L2 256K 

➢L3 46MB

Intel Knights Landing(KNL) Intel Xeon CPU E-7-8890 

(Haswell)
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➢Transpose data.

➢Thread-local SOA with different chunk sizes.

➢Scheduling: dynamics vs static.

➢ Thread configurations.

➢Simplify complex code by removing conditionals 

and nested code for vectorization.

Experiments
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Threads

Speed-up

Transpose vs 

SOA

➢Identify suitable 

chunk size.

➢Thread-local SOA 

2x faster than 

transpose.

T
im

e
(s

e
c
)

Threads
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WSM6 Chunk 

Size

➢Chunk = 32 for 

haswell.

➢Chunk = 64 for 

KNL.

Threads
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Threads
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➢Dynamic scheduling 

better in both cases.

➢70x on KNL and 

26x on Haswell.

➢FLAT better results 

than CACHE on KNL. 

➢Haswell peak at 32 

threads and KNL at 

64 threads

WSM6 Results

Threads
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GFS Phys. 

Chunk Size

➢Chunk = 8, 12 for 

haswell.

➢Chunk = 16,8 for 

KNL.

Threads
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GFS Phys. 

Results

➢Scale up to 18x with 

72 threads on 

Haswell.

➢Scale up to 27x with 

128 threads on KNL.

➢Static scheduling 

performs better than 

dynamics.
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GFS Rad. 

Chunks

➢Chunk = 8, 12 for 

haswell.

➢Chunk = 16,8 for 

KNL.

Threads
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GFS Rad. 

Results

➢Scale up to 30x 72 

threads on Haswell.

➢Scale up to 23x 64 

threads on KNL.

➢Dynamics 

scheduling performs 

better.
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Discussion

➢Better runtimes with haswell because more cores 

and faster clock.
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Discussion

➢Better runtimes with haswell because more cores 

and faster clock.

➢Better speed-ups with KNL because better 

utilization of threads.
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Conclusion and Future Work

➢Code modification to use thread-local SOA.

➢Identifying the appropriate chunk size to maximize 

work per thread and locality.

➢Future Directions

➢Better understanding of how to improve peak 

performance.

➢Study of MPI+OpenMP on larger test cases in context of 

NEPTUNE.
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Thank you!! 

Questions?

E-mail: touermi@sci.utah.edu
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Structure of Arrays (SOA)

...

SOA chunk size. 

Corresponds to parts of i 

loop.

- Simple example of SOA.

- Figure to the right shows actual SOA used in WSM6 optimization.

- Chunk size is chosen to be multiple of vector unit length.

- Top down optimization approach = From “high-level” to “low-level”

Basic AOS to SOA

Physics column

Transpose example
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Complex Loop Parallelization

•No conditional 9.7x

•No function calls 30x

•Vectorization 41x

do k=kte,kts-1

do i=its,ite

…

if(t(i,k).gt.t0c)then

…

w(i,k) = venfac(p(i,k), t(i,k), den(i,k))

if(qrs(i,k,2).gt.0)then

…

psmlt(i,k)=xka(t(i,k), den(i,k)…

end if 

if(qrs(i,k,2).gt.0)then

psmlg(i,k)=xka(t(i,k), den(i,k)…

…

end if

end if

end do

end do 

Loop 12 from WSM6 24



1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do 

1D case

Number of threads

Speed-up
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1D Arrays Experiments

!$OMP SIMD

do j=2,je-1

a(j)=0.1+c(j)/d(j)

b(j)=(0.2+c(j-1)-c(j))/(c(j)-c(j-1)+0.5)

end do 

1D case with large array sizes 

Number of threads

Speed-up
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2D Arrays Experiments

2D case

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do 
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2D Arrays Experiments

2D case with large array sizes

Number of threads

Speed-up

do j=2,je-1

!$OMP SIMD

do i=1,ie

a(i,j)=0.1+c(i,j)/d(i,j)

b(i,j)=(0.2+c(i,j-1)-c(i,j))/(c(i,j)-c(i,j-1)+0.5)

end do 
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Chunk Size

Number of threads

Time(ms)
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KNL Architecture

•MCDRAM:16GB, High BW

•Peak 3 teraflops double 

precision

•512 bit vectors

Tile
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MCDRAM & Configurations

Cores+L2
MCDRAM

(as cache)
DDR

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

Cores+L2

MCDRAM

(as mem)

DDR

Physical Addr Space

MCDRAM

(as cache)

● Cache Mode

○ No source changes needed

○ Misses are expensive (higher 

latency)

● Flat Mode

○ MCDRAM mapped to physical 

address

■ use numactl -- for 

configuration

○ Exposed as NUMA node

● Hybrid Mode

○ Combination of flat and cache 

mode

■ eg: 8GB cache and  8GB flat
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