

Service | Innovation | Value

Canadian Adventures in HPC Migration

iCAS 2017, September 12 2017 Luc Corbeil (SSC) Alain St-Denis, Peter Silva (SSC) Laurent Chardon (ECCC)

Canada

Agenda

- A bit of history
- A revamped HPC Solution
- Migration: opportunities and challenges

History

- Using HPC for weather forecasting since the 70's
- Previous contract with IBM
 - Initiated in 2003, Power/AIX, multiple upgrades
- Procurement launched in November 2014
 - Seeking for hosted supercomputing solution
 - Supercomputers
 - Pre-post processing clusters
 - Storage
 - Archiving
 - Network

HPC Renewal Contract Award

- New contract Awarded to IBM in May 2016
 - Installation phase
 - Initial solution, lease/hosting for 30-months
 - 2 performance upgrades at every 30 months
 - Optional 3rd performance upgrade

Initial Solution, Components (1)

- Two redundant data halls, each comprised of
 - Supercomputer
 - Cray XC-40, 856 computes nodes, Xeon E5-2695v4 18C 2.1GHz
 - 2.5 PB usable, Sonexion/Lustre storage
 - Pre/post processing (PPP) clusters
 - Cray CS-400, 158 compute nodes, Xeon E5-2699 v4 22C 2.2GHz
 - Site-store
 - IBM ESS GPFS storage, 18 PB

Initial Solution, Components (2)

- Shared accross halls
 - Homes
 - IBM ESS GPFS storage, full replication between halls
- HPSS for data archiving
 - 1.1 PB disk cache
 - 217 PB of tape storage (total of the two copies)

Resulting Architecture

The Latest Addition to a Long History

Performance (MFlops), EC Supercomputers

Migration: Key Aspects

- Network & Environment
- Data movement
- Containers
- Timings

Network/Environment

- SSC's mandate covers all of Government of Canada scientific computing requirements
 - Bioinformatics, material sciences, etc.
- Opportunity
 - Create a networking zone dedicated to scientific computing
 - Install new HPC Solution for ECCC in this new environment
 - Foster more inter-departmental collaboration
- Challenge
 - Cannot create a cross-department network gateway

Data Movement: Sarracenia (1)

- MetPX-Sarracenia: Swiss Army Knife for data exchange
 - Based on AMQP (Advanced Message Queuing Protocol)
 - Used for data acquisition/dissemination, inter-hall mirroring
 - Network abstraction to the user
 - Data is advertised as ready at one end
 - Clients are advertising data they want to get
 - Sarracenia does the rest
 - <u>http://metpx.sourceforge.net</u>

Data Movement: Sarracenia (2)

File Movement Inside Solution (1)

- Moving data is complex for users
 - « Feasible » is not equal to « optimal »
 - Many protocols to choose from (cp, scp, bbcp, rsync, ...)
 - Network link to use (IB native, IPoIB, 10Gb, etc...)
 - Consequence
 - On user: task takes longer than necessary
 - On overall infrastructure: server/network high load

File Movement Inside Solution: sscp

Sscp

- User just need to indicate from where to where
 - As long as ssh keys collaborate
- Transfer mechanism selected at runtime
 - Considers data locality, file size, number of files, etc..

Completing a Migration Before it Starts

- Opportunity: do we need full solution on the floor to start migrating codes?
 - We can get a demo system
 - We can « call a friend » with a similar system
 - We can leverage containers
 - Destination OS/Compiler were known

Containers

- Ligthweight VMs, integrated with batch scheduler
 - User selectable Linux OS distro
 - Used to enforce resource limits (with cgroups)
 - Guarantees availability of requested resources at run time
 - Logical isolation
 - Users "see" only filesystems they have access to
 - No performance degradation, no emulation
 - Transparent to users

General Purpose Scientific Cluster

- Commodity cluster
 - Address computing requirements of science-based federal departments in Canada and allow them to collaborate
 - Using LXC containers to logically isolate various workloads in multi-tenant environment
 - Available prior to the installation of the PPPs

Impact on Migration

- Majority of migration work completed before PPP installation
 - Target OS/Environment was setup and deployed on GPSC
 - Through bind mounts, even filesystems names were set
 - Container replicated on PPP once installed
- Final validation of applications PPP became trivial
- Future OS migrations can go on a per-app basis
 - No more D-Day where everything has to move at once

Potential in Singularity

- Relieve sysadmins from Linux distro image management
 - Singularity puts image management in the hands of the users, BYOI
- Simplify local extensions to the batch scheduler system profile
- Remove the SR-IOV layer (virtual split of PCI network devices)
 - Singularity uses the host's network namespace
- Security: runs in user space.
 - Image management requires privileges: done elsewhere

Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for mobility of compute. PLoS ONE 12(5): e0177459. https://doi.org/10.1371/journal.pone.0177459

Timings

- Users love consistent application performance
- Disturbance can come from many sources
- Crucial for Ops to have predictive timings
 - Must meet SLA for product delivery timeliness

Hunting for Consistent Performance

Downgrade firmware Increase User load Con. timeout mserve 4 GEMDM 2017071600 ssm + DVS OUT_DYN + PHY_output NEST_input TASK SERIAL_AFTER_GEMDM SERIAL BEFORE GEMDM DYNSTEP PHYSTEP MUSTOP 8 20 Duration [m] 9 0

RDPS 5.1.0 Runmod Task timings from 2017070100 to 2017090112

*Time series of RDPS performance, André Plante, ECCC

Jul

One Team – One Culture – One Purpose – One SSC

Aug

Sep

Conclusion

- A new HPC Solution has been deployed
- Significant improvements, not only in performance
 - Architecture: network, environment, redundancy
 - Data movement
 - Customization of the platform
- Next steps
 - Accelerators
 - Visualization
 - Improved Containers

