
Building a High-Performance Earth System Model in Julia

Maciej Waruszewski1, Lucas Wilcox1, Jeremy Kozdon1, Frank Giraldo1,
Tapio Schneider2

1Department of Applied Mathematics
Naval Postgraduate School

2California Institute of Technology

MultiCore 9, NCAR, September 26 2019

The CliMA Project

collaboration between Caltech, MIT, NPS,
and JPL to build a new climate model

model will learn from observational data
and targetted high-resolution simulations

NPS responsible for the DG-based
dynamical core

development from scratch in Julia

open-source under a permissive license
(Apache 2.0)

https://github.com/climate-machine

https://github.com/climate-machine

Julia

dynamic high-level language designed for
technical computing (MIT, 2009)

aims to solve the two-language problem

based on LLVM

most of Julia is written in Julia

can be used interactively via REPL

has a package manager

achieves high performance by JIT compilation
and aggressive specialization

has powerful metaprogramming and reflection
capabilities

Example Julia code
(CLIMA GMRES loop)
for outer j = 1:M
Arnoldi using Modified Gram Schmidt
linearoperator!(krylov_basis[j + 1], krylov_basis[j])
for i = 1:j
H[i, j] = dot(krylov_basis[j + 1], krylov_basis[i])
krylov_basis[j + 1] .-= H[i, j] .* krylov_basis[i]

end
H[j + 1, j] = norm(krylov_basis[j + 1])
krylov_basis[j + 1] ./= H[j + 1, j]

apply the previous Givens rotations
to the new column of H
@views H[1:j, j:j] .= Ω * H[1:j, j:j]

compute a new Givens rotation to zero out H[j + 1, j]
G, _ = givens(H, j, j + 1, j)

apply the new rotation to H and the rhs
H .= G * H
g0 .= G * g0

compose the new rotation with the others
Ω = lmul!(G, Ω)

residual_norm = abs(g0[j + 1])

if residual_norm < threshold
converged = true
break

end
end

Julia: example of specialization

Julia

julia> f(x, y) = x * y
f (generic function with 1 method)
julia> x = 1; # Int64
julia> y = 1; # Int64
julia> @code_native f(x, y)

Assembly

; ┌ @ REPL[1]:1 within `f'
; │┌ @ REPL[1]:1 within `*'

imulq %rsi, %rdi
; │└

movq %rdi, %rax
retq
nopl (%rax,%rax)

; └

Julia: example of specialization

Julia

julia> f(x, y) = x * y
f (generic function with 1 method)
julia> x = 1.0; # Float64
julia> y = 1.0; # Float64
julia> @code_native f(x, y)

Assembly

; ┌ @ REPL[1]:1 within `f'
; │┌ @ REPL[1]:1 within `*'

vmulsd %xmm1, %xmm0, %xmm0
; │└

retq
nopw %cs:(%rax,%rax)

; └

Julia: example of specialization

Julia

julia> f(x, y) = x * y
f (generic function with 1 method)
julia> x = 1.0; # Float64
julia> y = 1 ; # Int64
julia> @code_native f(x, y)

Assembly

; ┌ @ REPL[1]:1 within `f'
; │┌ @ promotion.jl:314 within `*'
; ││┌ @ promotion.jl:284 within `promote'
; │││┌ @ promotion.jl:261 within `_promote'
; ││││┌ @ number.jl:7 within `convert'
; │││││┌ @ REPL[1]:1 within `Type'

vcvtsi2sdq %rdi, %xmm1, %xmm1
; │└└└└└
; │┌ @ float.jl:399 within `*'

vmulsd %xmm0, %xmm1, %xmm0
; │└

retq
nopw (%rax,%rax)

; └

Julia: example of specialization

Julia

julia> f(x, y) = x * y
julia> using StaticArrays
julia> x = @SMatrix rand(4, 4)
julia> y = @SVector rand(4)
julia> @code_native f(x, y)

Assembly

; ┌ @ REPL[1]:1 within `f'
; │┌ @ matrix_multiply.jl:8 within `*'
; ││┌ @ matrix_multiply.jl:45 within `_mul'
; │││┌ @ matrix_multiply.jl:58 within `macro expansion'
; ││││┌ @ REPL[1]:1 within `*'

vbroadcastsd (%rdx), %ymm0
vmulpd (%rsi), %ymm0, %ymm0
vbroadcastsd 8(%rdx), %ymm1
vmulpd 32(%rsi), %ymm1, %ymm1

; │││└└
; │││┌ @ float.jl:395 within `macro expansion'

vaddpd %ymm1, %ymm0, %ymm0
; │││└
; │││┌ @ matrix_multiply.jl:58 within `macro expansion'
; ││││┌ @ float.jl:399 within `*'

vbroadcastsd 16(%rdx), %ymm1
vmulpd 64(%rsi), %ymm1, %ymm1

; ││││└
; ││││┌ @ float.jl:395 within `+'

vaddpd %ymm1, %ymm0, %ymm0
; ││││└
; ││││┌ @ float.jl:399 within `*'

vbroadcastsd 24(%rdx), %ymm1
vmulpd 96(%rsi), %ymm1, %ymm1

; ││││└
; ││││┌ @ float.jl:395 within `+'

vaddpd %ymm1, %ymm0, %ymm0
; │└└└└

vmovupd %ymm0, (%rdi)
movq %rdi, %rax
vzeroupper
retq
nopw %cs:(%rax,%rax)

; └

Julia benefits for CliMA

In addition to being performant Julia

is a good common language for domain experts from the Earth sciences and
uncertainty quantification/machine-learning communities

enables rapid development and refactoring

makes coupling independently developed components easy

We also get special support from the MIT Julia Lab.

A new climate model needs to fully embrace accelerators

Modern supercomputers are increasingly becoming accelerator-based with hardware
evolving at a rapid pace

Julia support for programming accelerators is another of its strong points.

Julia GPU ecosystem

Pioneering work by Tim Besard (@maleadt, Julia Computing)

Low level - CUDAnative

"write CUDA in Julia"

Julia GPU compiler implemented as a library with maximal reuse of the Julia
compiler infrastructure (∼ 4.5K lines of code, backend provided by LLVM)

the same approach already inspired efforts for AMD GPUs and Google TPUs

High level - CuArrays

provides arrays that live in the GPU memory and data transfer primitives

can program both CPUs and GPUs using element wise operations and
(map)reduce functions

More on CUDAnative

leverages Julia ability to generate
static code

accepts mostly undocumented subset
of Julia in kernels ("if it works it works")

integrates well with CUDA tools
(nvprof, nvvp, etc.)

performance for simple code is often
as good as CUDA compiled with clang

performance for more abstract code
can be hard to predict

debugging is tricky

Example CUDAnative code
(matrix transpose using shared memory)
const TDIM = 32
const BLOCK_ROWS = 8

function cudanative_transpose!(a_transposed, a)
T = eltype(a)
tile = @cuStaticSharedMem T (TDIM + 1, TDIM)

by = blockIdx().y
bx = blockIdx().x

ty = threadIdx().y
tx = threadIdx().x

i = (bx - 1) * TDIM + tx
j = (by - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds tile[ty + k, tx] = a[i, j + k]

end

sync_threads()

i = (by - 1) * TDIM + tx
j = (bx - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds a_transposed[i, j + k] = tile[tx, ty + k]

end

nothing
end

CLIMA abstraction for platform portability - GPUifyLoops

GPUifyLoops transpose
function gpuifyloops_transpose!(a_transposed, a)
T = eltype(a)
tile = @shmem T (TDIM + 1, TDIM)

@loop for by in (1:size(input, 2) ÷ TDIM; blockIdx().y)
@loop for bx in (1:size(input, 1) ÷ TDIM; blockIdx().x)

@loop for ty in (1:BLOCK_ROWS; threadIdx().y)
@loop for tx in (1:TDIM; threadIdx().x)

i = (bx - 1) * TDIM + tx
j = (by - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds tile[ty + k, tx] = a[i, j + k]

end

end # tx
end # ty

@synchronize

@loop for ty in (1:BLOCK_ROWS; threadIdx().y)
@loop for tx in (1:TDIM; threadIdx().x)

i = (by - 1) * TDIM + tx
j = (bx - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds a_transposed[i, j + k] = tile[tx, ty + k]

end

end # tx
end # ty
end # bx
end # by

end

CUDAnative transpose
function cudanative_transpose!(a_transposed, a)

T = eltype(a)
tile = @cuStaticSharedMem T (TDIM + 1, TDIM)

by = blockIdx().y
bx = blockIdx().x

ty = threadIdx().y
tx = threadIdx().x

i = (bx - 1) * TDIM + tx
j = (by - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds tile[ty + k, tx] = a[i, j + k]

end

sync_threads()

i = (by - 1) * TDIM + tx
j = (bx - 1) * TDIM + ty

for k = 0:BLOCK_ROWS:TDIM-1
@inbounds a_transposed[i, j + k] = tile[tx, ty + k]

end

nothing
end

CLIMA abstraction for platform portability - GPUifyLoops

developed by Valentin Churavy (@vchuravy, MIT) motivated by CLIMA needs

inspired by OCCA

handles lowering of math functions to CUDA intrinsics on the GPU (e.g. translates
sin to CUDAnative.sin)

provides a loop unrolling macro

performs additional optimization passes on the GPU (inlining, FMA generation)

helps with GPU debugging since you can try running on the CPU first

does all of this in less than 500 lines of code !

CLIMA abstraction for platform portability - GPUifyLoops

developed by Valentin Churavy (@vchuravy, MIT) motivated by CLIMA needs

inspired by OCCA

handles lowering of math functions to CUDA intrinsics on the GPU (e.g. translates
sin to CUDAnative.sin)

provides a loop unrolling macro

performs additional optimization passes on the GPU (inlining, FMA generation)

helps with GPU debugging since you can try running on the CPU first

does all of this in less than 500 lines of code !

Example of abstractions inside kernels - balance laws

CLIMA assumes equations of the form

∂q
∂t

+∇ · F = S

which can be specified inside kernels using vector notation. For example, the shallow
water equations can be written in code as

@inline function flux!(m::SWModel,
F::Grad,
q::Vars,
α::Vars,
t::Real)

U = q.U
η = q.η
H = m.problem.H

F.η += U
F.U += grav * H * η * I
F.U += 1 / H * U * U'

return nothing
end

@inline function source!(m::SWModel,
S::Vars,
q::Vars,
α::Vars,
t::Real)

τ = α.τ
f = α.f
U = q.U
S.U += τ - f × U

linear_drag!(m.turbulence, S, q, α, t)

return nothing
end

CLIMA approach to distributed computing

Julia wrapper for MPI - MPI.jl

started by Lucas Wilcox (@lcw, NPS) in 2012, under active development with
many contributors since

recently gained support for CUDA-aware MPI

Distributed arrays abstraction - CLIMA.MPIStateArrays

an array with support for MPI holding extra ghost elements

has methods for communicating neighbours etc.

backed by either a CPU-resident Array or a GPU-resident CuArray

supports distributed broadcasting and global reductions

CLIMA performance on CPUs: single CPU run time

Direct run time comparison to NUMA – another DG code from NPS written in Fortran.
Single core run with 103 elements and polynomial order 4 (rising thermal bubble test).

Timings

Kernel CLIMA NUMA
Volume 601.3 s 773 s
Face 297.5 s 310.5 s
LSRK 13.4 s 120.8 s
Total 912.8 s 1289.5 s

CLIMA performance on CPUs: strong scaling (1)

Scaling comparison to NUMA

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Numer of cores

Sp
ee

du
p

CLIMA
NUMA

CLIMA performance on CPUs: strong scaling (2)

Scaling comparison to NUMA

4 8 12 16 20 24 28 32

4

8

12

16

20

24

28

32

Numer of cores

Sp
ee

du
p

CLIMA
NUMA

CLIMA performance on GPUs: roofline

1 2 3 4 5 6 7 8 9 10

0

2,000

4,000

6,000

8,000

830
GB/s

Arithmetic Intensity [FLOPs/Byte]

Pe
rf

or
m

an
ce

[G
FL

O
Ps

/s
]

Tesla V100

volume
aux
face
lsrk

norm

Conclusions and outlook

Conclusions

Julia delivers on its promises, enabling high-performance while keeping
productivity and abstraction level high

macros and other code transformation tools enable platform independent
programming in Julia using custom kernels

CLIMA is faster than NUMA on the CPU and our kernels get fairly close to
machine limits on the GPU

Outlook and future work

performance CI

more GPUifyLoops backends

benchmarks using multiple GPUs and multiple nodes

CLiMA is funded by private and public funders

ERIC AND WENDY SCHMIDT

CHARLES TRIMBLE
RONALD AND MAXINE LINDE

CLIMATE CHALLENGE

