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Dusk of Moore’s Law: opportunities for 
weather and climate modelling?
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Beginning of change: “Attack of the Killer Micros”
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The good old days of tera- and petascale computing
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1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

Cray T3E with Alpha processors (RISC)

Cray XT5 with AMD Opteron processors (X86)

Cray 1, .. X/YMP: vector processors

http://www.top500.org
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The good old days of tera- and petascale computing
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1st application at > 1 TFLOP/s sustained

1st application at > 1 PFLOP/s sustained

Ax = bLinpack benchmark solves:

for the historic development of supercomputing performance, see www.top500.org

Cray T3E with Alpha processors (RISC)

Cray XT5 with AMD Opteron processors (X86)

1,000-fold performance improvement per decadeCray 1, .. X/YMP: vector processors

KKR-CPA (MST)

LSMS (MST)

WL-LSMS (MST)

1,000x perf. improv. per decade seems  
hold  for multiple-scattering-theory(MST)-  

based electronic structure  for materials science 

http://www.top500.org
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“Only” 100-fold performance improvement in climate codes

!6

Source: Peter Bauer, ECMWFSource: Peter Bauer, ECMWF
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Has the efficiency of weather & climate 
codes dropped 10-fold every decade? 



T. Schulthess|

Floating points efficiency dropped from 50% on Cray Y-MP to 
5% on today’s Cray XC (10x in 2 decades)
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Source: Peter Bauer, ECMWF

Cray Y-MP @ 300kW

Cray XT5 @ 7MW
Cray XT5 @ 1.8 MW

System size (in energy footprint) grew  
much faster on “Top500” systems

KKR-CPA (MST) LSMS (MST) WL-LSMS (MST)

IBM P5 @ 400 kW

IBM P6 @ 1.3 MW
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The end of Robert H. Dennard (1974)
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Source: Rajeeb Hazra’s (HPC@Intel) talk at SOS14, March 2010



T. Schulthess|

PXCT imaging of Intel processor
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M Holler et al. Nature 543, 402–406 (2017) doi:10.1038/nature21698
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Source: Andy Keane @ ISC’10

for 8 GPUs, or $16k a piece

$500,000,000 
$2,000,000,000 

$13,000
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Porting codes to GPUs, Xeon (Phi), ARM, etc.
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CUDA (C / C++ / Fortran) OpenCL

OpenACC OpenMP 4.x
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Architectural diversity is here to stay, because it is 
a consequence of the dusk of CMOS scaling 

(Moore’s Law)

What are the implications?

Complexity in software is one,  
but we don’t understand all implications

Physics of the computer matters more than ever
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The good news
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C++ 11, 14, (HPX-3/Kokkos), … 17, 20, …

C++ standard is evolving quickly and implementations follow!
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Who will pay for the implementation of 
Fortran, OpenACC, OpenMP, …?
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The top ranking programming languages in 2017  
spectrum.ieee.org 
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http://spectrum.ieee.org
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The top ranking programming languages in 2017  
spectrum.ieee.org 
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lap(i,j,k) = –4.0 * data(i,j,k) +
    data(i+1,j,k) + data(i-1,j,k) + 
    data(i,j+1,k) + data(i,j-1,k);
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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= − ∇p + ρg − 2Ω×(ρv) + F
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
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computing have seen the same performance 
improvements. For example, the sustained 
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by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
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is more important, as meteorological and 
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on complex, but typically well-engineered 
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experts use computers inefficiently, what does 
this say about the applications developed by 
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In this Commentary, I discuss state-of-
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 

© 2015 Macmillan Publishers Limited. All rights reserved
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Whereas this long-term sustained 
exponential growth had profound impact 
on the productivity of scientists and opened 
many new avenues in physics research, 
not all types of problems in scientific 
computing have seen the same performance 
improvements. For example, the sustained 
performance of climate codes, as documented 
by the European Centre for Medium-
Range Weather Forecasts (ECMWF) over 
approximately the same period as the 
Top500 project, has improved only by 
a factor of 100 per decade (Peter Bauer, 
manuscript in preparation). This is still an 
exponential growth, but it demonstrates 
the significant decrease in efficiency for 
software applications in some fields. This 
is more important, as meteorological and 
climate simulations have been around since 
the dawn of modern computing1. They rely 
on complex, but typically well-engineered 
computer codes that have been designed to 
run on the top supercomputing systems. If 
experts use computers inefficiently, what does 
this say about the applications developed by 
regular researchers?

In this Commentary, I discuss state-of-
the-art programming and parallelization in 
physics today. I try to analyse the challenges 
in writing efficient scientific software and 
examine possible ways in which physicists 
can deal with the rapidly increasing 
complexity of computer architectures. To do 
so it is important to first recall the main uses 
of computing in physics.
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Figure 1 | Traditional computational science workflow. A physical model (of the atmosphere, for instance) 
is first translated into mathematical equations (here, non-hydrostatic compressible Euler equations), 
which in turn are solved with algorithms (such as finite differences on a structured grid), implemented 
in a program (for example, stencil code), and subsequently compiled into machine code that executes 
on a canonical computer architecture. The green line marks the separation of work. The physical 
model image is adapted from ref. 9, NPG. The supercomputer image © British Crown Copyright, 
The Met Office / Science Photo Library.

Predictions and data analysis
Long before the advent of modern 
computing, modelling and simulation 
were used in physics in two ways. The 
first and best known (which we call the 
traditional way) is the use of computers 
to solve challenging theoretical problems 
that have no known analytical solution. 
In this case, the theory is well understood 
and the governing equations are solved 
numerically with elaborate computational 
methods to make quantitative and verifiable 
predictions. Sometimes the numerical 
solution of a theoretical problem may lead 
to new insights in its own right, as was the 
case with the discovery of the fluctuation 
theorem2. This was an argument for defining 
computer simulations as a third, independent 
pillar of science, complementing theory 
and experiment3. For our purpose, this 
distinction is not necessary, as from a 
computational point of view we are still 
solving known equations. The simulations are 
carefully planned — that is, the mathematical 
analysis and algorithms are well known and 
the elaborate computer codes, as in the case 
of climate simulations, have been developed 
and optimized. Scientists, and physicists 
in particular, will not shy away from great 
efforts in using cutting-edge technologies 
to solve such problems, and they will use 
imperative programming languages such as 
C or FORTRAN with machine-level codes to 
squeeze every last bit of performance out of a 
computing system.

The second, and profoundly different, use 
is the analysis of experimental data with the 
help of modelling and simulations before the 
theory and governing equations are known. 
This is essentially what Johannes Kepler did 
when he analysed Tycho Brahe’s planetary 
orbit data with heliocentric elliptical models 
to discover the three famous laws that 
now carry his name — Newton’s theory 
of gravitation, which explains Kepler’s 
laws, came later. Scientists today use 
computers to rapidly prototype models, 
thereby assimilating in a matter of seconds 
or minutes many orders of magnitude 
more data than Kepler did in months of 
laborious manual computations. Along with 
the development of electronic computing 
came large experimental facilities, which 
significantly increased the importance of 
systematic exploratory tools for data analysis. 
This lead to a substantial improvement of 
mathematical algorithms over the past few 
decades, which, together with the emergence 
of social media on the World Wide Web, 
have made this exploratory use relevant 
to areas outside of natural sciences, for 
instance in economics and social sciences. 
These have, in turn, led to the argument that 
a fundamentally new, fourth paradigm of 
science is emerging: ‘data science’3. For our 
present purpose, however, this distinction 
is again not necessarily important. But, for 
this second exploratory use of modelling and 
simulation scientists use more descriptive 
programming languages like Python or 
Ruby, and they rely on existing libraries even 
if they are not optimized.

Scientists and computer engineers
Programming serves two complementary 
purposes: one is to specify the computation 
and the other is to manage computer 
resources. Most scientists are familiar with 
the former, whereas the latter is considered 
to be primarily the concern of computer 
engineers. The distinction is important as 
it allows a clear separation of concerns: 
scientists only need to know about the 
complexity of models and mathematics, and 
system engineers only need to focus on the 
complexity of the computer.

In this ideal case, the programming 
environment allows scientists to specify 
the computational tasks in terms of 
human-readable equations — descriptive 
programming — that are independent of the 
underlying system, which is portable across 
many platforms. The Python programming 
language, with its many associated libraries 
and tools, provides such an environment, 
but at the cost of performance. When the 
computation is big and has to be scaled, 
performance does matter. In this case 
scientists have the choice of algorithms 
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MeteoSwiss’ performance ambitions in 2013
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COSMO: old and new (refactored) code
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September 15, 2015

Today’s Outlook: GPU-accelerated Weather Forecasting
John Russell

“Piz Kesch”
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Where the factor 40 improvement came from

!33

1

5

10

15

20

25

30

35

40

Constant budget for investments and operations

Grid 2.2 km ! 1.1 
km

24
x Ensemble with multiple forecasts

Data assimilation

10
x

1.7x from software refactoring (old vs. new implementation on x86)

2.8x Mathematical improvements (resource utilisation, precision)

2.8x Moore’s Law & arch. improvements on x86

2.3x Change in architecture (CPU ! GPU)

1.3x additional processors

Requirements from MeteoSwiss

6x

Investment in software allowed mathematical improvements and change in architecture 

There is no silver bullet!

Bonus: reduction in power!
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Setting a new baseline for atmospheric simulations
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The state-of the art implementation of COSMO running at 
most weather services on multi-core hardware.

The refactored version of COSMO running at MeteoSwiss 
on multi-core or GPU accelerated hardware.

~10x
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GridTools Framework
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~1km

~50m 

Tri-diagonal solve
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Store fields in (i,j,k) or (k,i,j) order?

No performance hotspots

This depends on the architecture 
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Besides storage order, there are several 
other optimisation techniques (e.g. loop/
stencil fusion) where details depend on 

architecture specifics 
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Exploring Intel Xeon Phi (KNL) and NVIDIA’s P100
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Horizontal diffusion Vertical advection

Source: Felix Thaler, CSCS
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Toolchain
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The GridTools Team
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Carlos Osuna 
Other Grids, CUDA 
Product Owner

Chritopher Bignamini 
Dycore (no full time)
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KNL Backend
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Scrum Master
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Technical Lead

Nora Abi Akar 
ARM Backend

Stefan Moosbrugger 
KNL, Storage

Anton Afanasyev 
Software Architect
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What exactly is  
“exascale” computing?
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Exascale is not just ~103 PF

• Delivers 50x the performance of today’s ~20 PF systems, supporting application that 
deliver high-fidelity solutions in less time and address problems of greater complexity 

• Operates in a power envelope of 20-30 MW 
• Is sufficiently resilient (perceived full rate: <= 1/week 
• Includes a software stack that supports a broad spectrum of applications and workloads

A capable exascale computing system requires an entire computational ecosystem that: 

Paul Messina, US-DoE
7 Exascale Computing Project, www.exascaleproject.org 

Transition to higher trajectory with advanced architecture 
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But what is the goal for exascale 
computing, and the baseline?
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Let’s assume for a moment we can 
build on the CSCS-MCH experience
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Near-global climate simulation at 1km resolution: establishing 
a performance baseline on 4888 GPUs with COSMO 5.0
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Near-global climate simulation on 4,888 GPUs at 1 km resolution SC’17, November 2017, Denver, CO
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(a)Weak scalability on the hybrid P100 Piz Daint
nodes, per COSMO time step of the dry simula-
tion.
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(b) Strong scalability on Piz Daint. (Filled sym-
bols) On P100 GPUs, and (empty symbols) on
Haswell CPUs, using 12 MPI ranks per node.

h�x i #nodes �t [s] SYPD MWh/SY gridpoints
930m 4,888 6 0.043 596 3.46⇥1010
1.9 km 4,888 12 0.23 97.8 8.64 ⇥ 109
47 km 18 300 9.6 0.099 1.39 ⇥ 107

(c) Time compression (SYPD) and energy cost (MWh/SY)
for three moist simulations. At 930 m grid spacing ob-
tained with a full 10d simulation, at 1.9 km from 1,000
steps, and at 47 km from 100 steps

Figure 6: (a) Weak and (b) strong scalability results and (c) summary of the time compression achieved in terms of SYPD.

TaihuLight system. As argued in Section 3, such large timesteps are
not admissible for global climate simulations resolving convective
clouds (even when using implicit solvers), and a maximum timestep
of 40-60 s would very likely be needed; this will decrease their SYPD
by a factor 4 to 6. Furthermore, their simulation covers only 32% of
the Earth’s surface (18�N to 72�), but uses twice as many levels; this
would further reduce their SYPD by a factor 1.5. Thus we estimate
that the simulation of Yang et al. [55] at 2 km would yield 0.093 to
0.064 SYPD when accounting for these di�erences. In comparison,
our simulation at 1.9 km yields 0.23 SYPD, i.e. is faster by at least a
factor 2.5. Note that this estimate does not account for additional
simpli�cations in their study (neglection ofmicrophysical processes,
spherical shape of the planet, and topography). In summary, while
a direct comparison with their results is di�cult, we argue that our
results can be used to set a realistic baseline for production-level
GCM performance results and represent an improvement of at least
a factor 2 with respect to previous results.

6.4 Energy to Solution
Based on our power measurement (cf. Section 5.3) we provide the
energy cost of our full scale simulations (Table 6c) using the energy
cost unit MWh per simulation year (MWh/SY). The 10-day-long
simulation at 930 m grid spacing running on 4,888 nodes requires
596 MWh/SY while the cost of the simulation at 1.9 km on 4,888
nodes is 97.8 MWh/SY. For comparison the coarse resolution at
47 km simulation on a reduced number of nodes (18) requires only
0.01MWh/SY.

Again, we attempt a comparison with the simulations performed
by Yang et al. [55]. The Piz Daint system reports a peak power
draw of 2,052 kW when running the HPL benchmark. The sus-
tained power draw when running the 930 m simulation amounted
to 1,059.7 kW, thus 52% of the HPL value. The TaihuLight system re-
ports a sustained power draw for the HPL benchmark of 15,371 kW
[2]. While Yang et al. [55] do not report power consumption of their
simulations, we expect the simulations on Piz Daint to be at least 5
times more power e�cient, even when assuming similar achieved
SYPD (see above).

6.5 Data Transfer E�ciency E
To estimate a solution for the optimization problem in Eqn. (5), we
use the METIS library [32]. The results are presented in Table 2. The

level METIS Q COSMO D no merging D̂
registers 1.51 · 109 (20240) 1.72 · 109 (20160) 2.6 · 109 (112618)
sh. mem. 64,800 (245) 107,600 (255) 229,120 (2649)
L2 cache 1,023 (93) 1,160 (149) 2,341 (1192)

Table 2: Data movement bounds (Equation 5) based on CDAG parti-
tions. The number of partitions is shown in brackets.

metric optimized not optimized ratio
time meas. per step 0.16s 0.25s 0.64
estimated E 0.67 0.44 0.65

Table 3: Performance model veri�cation results.

METIS Q column is the value obtained from METIS partitioning
library and is an estimation of the lower bound Q . The COSMO D

column is the total communication volume for COSMO’s optimized
partitioning. The nomerging D̂ column shows the communication
volume needed if no merging was performed like in the original
Fortran version of the code.

The model shows how e�cient the COSMO tiling is – it achieves
80%, 74% and 89% of the best register, shared memory and L2 cache
data locality, respectively. Our sophisticated nested tiling schemes
result in close to optimal data reuse. Because on the P100, all mem-
ory accesses to/from DRAM go through the L2 unit, we focus on
the e�ciency of this unit such that

E = QL2
DL2
· B
B̂

= 0.88 · 0.76 = 0.67,

whereDL2 andQL2 stand for estimated number of main memory
operations and its lower bound, respectively.

The model also can estimate the e�ciency of our optimizations.
Assuming that we can reach the peak achievable bandwidth B̂ if
we perform no data locality optimizations (D̂), then:

Eno_opt =
QL2

D̂L2
· B̂
B̂

= 0.44

To validate the model results, we have conducted a single-node
runs with and without our data locality optimizations. The results
show the high precision of our model (Table 3).

Metric: simulated years per wall-clock day

2.5x faster than Yang et al.’s 2016 Gordon Bell winner run on TaihuLight!

Fuhrer et al., Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-230, published 2018

https://doi.org/10.5194/gmd-2017-230
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“Exascale” goal for global weather and climate runs
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The baseline for COSMO-global and IFS
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Memory use efficiency
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Fuhrer et al., Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-230, published 2018

Achieved BW

Max achievable BW

0.88

0.76

= 0.67

2x lower than peak BW

https://doi.org/10.5194/gmd-2017-230
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How realistic is it to overcome 65-fold shortfall of a grid-based 
implementation like COSMO-global?
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1. Icosahedral grid (ICON) vs. Lat-long/Cartesian grid (COSMO)
2x fewer grid-columns 
Time step of 10 ms instead of 5 ms 4x

2. Improving BW efficiency

Improve BW efficiency and peak BW 1.5x
(results on Volta show this is realistic)

3. Weak scaling

4x possible in COSMO, but we reduced  
available parallelism by factor 2 2x

4. Remaining reduction in shortfall 5x
Numerical algorithms (larger time steps)
Further improved processors / memory

But we don’t want to increase the footprint of the 2021 system beyond “Piz Daint”
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The main conclusions
• Change is nothing new to HPC, nor is the reluctance to adapt to change 

• “Killer micros”, memory wall, end of Dennard Scaling and multi-core, GPU 

• CMOS scaling tapering due to constraints in device physics and fabrication 

• Architectural improvements & diversity seem a good option to improve performance 

• New opportunities for materials science and device physics? 

• Fundamental challenge to software / application development 

• Domain specific libraries and frameworks are a way out 

• GridTools framework with successful demonstration to COSMO @ MeteoSwiss  

• “Exascale” computing, if properly defined and pursued, could give us ~1km scale 
horizontal resolution in simulation with good throughput

Great motivations to clean up our software stack!
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