Evaluating the Spread of Climate Model Ensembles Based on Computing Environment Selection Tom Robinson Multicore Workshop 2019

Outline

- Motivation
- Ensemble method
- Ensemble description
- Ensemble spreads and comparison
- Conclusions

Motivation

- Reproducibility is important
- Floating point and rounding differences between runs prevents bit-for-bit reproducibility
- "Climate answers" are dependent on the selection of platform/compiler (options)
- What is the "model spread" due to rounding error?
- Is the model spread platform dependent?

Ensemble Method

- GFDL AM4 (github.com/NOAA-GFDL/AM4)
- Simulate rounding error
 - Single random point
 - Initial mid-level T 10⁻¹³ K
 - Different point for each ensemble member
- Model run for one year

Ensembles

Compiler	Platform	Processor	# of ensembles
intel 16	Gaea	B/H	300
intel 16	Gaea	B/H	100
intel 18	Gaea	B/H	100
cray	Gaea	B/H	95
intel 16	theta	KNL	118
intel 19	Hera	Skylake	47
	Compiler intel 16 intel 16 intel 18 cray intel 16 intel 19	CompilerPlatformintel 16Gaeaintel 16Gaeaintel 18GaeacrayGaeaintel 16thetaintel 19Hera	CompilerPlatformProcessorintel 16GaeaB/Hintel 16GaeaB/Hintel 18GaeaB/HcrayGaeaB/Hintel 16thetaKNLintel 19HeraSkylake

Average standard deviation

- Find the point-by-point standard deviation
 - Take a global average
 - Plot and compare
 - Point by point mean
 - Are the means similar?
 - Point by point standard deviation
 - Compare across ensembles
 - Is spread platform dependent?

Global Spread Surface Pressure

Global Spread U wind

Mean ps (base)

ps Standard Deviation

KNL-Base Mean Difference

 $t2_mean DEC ens = 118$

*All values within 1 standard deviation

Standard Deviation Diff (theta-base)

Standard Deviation Diff (cray-base)

Standard Deviation %Diff (KNL-base)

u DEC

Standard Deviation %Diff (cray-base)

u DEC

Standard Deviation %Diff (KNL-base)

u MAY

Standard Deviation %Diff (skylake-base)

u MAY

Base30-Base %diff

u MAY

Conclusions

- Ensemble means are not platform dependent
- Ensemble spreads over a local region are platform/compiler dependent
- You should use a large ensemble to report the error due to rounding on your computing platform.
 - Global Average for summary
 - Map of values for patterns/weaker areas