

ORACLE

Current and Emerging Storage Technologies iCAS2013

Dr. Robert M. Raymond Director, HW Development Tape Systems

Program Agenda

- Data Challenges
- Data Storage technology trends
- Disk technology trends
- Tape technology trends

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Data Growth and Access Requirements

The nature of storage and data management has to change

5 Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Source: IDC Document 1414_v3: THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East, 2012

ORACLE

Economics of Tiered Storage

Tape is the Foundation: Most of the Data Stored at the Lowest Cost

Archive Technology Cost Analysis

NEW Study Concludes Disk Costs 26 Times More Than Tape Solution

Source: The Clipper Group, http:// www.oracle.com/us/corporate/analystreports/ industries/clipper-tcostorage-2013-1959019.pdf Study compares a 1 PB archive growing at 45% annually for 9 years on disk and tape. Assumes 1:1 compression.

ORACLE

Digital Archive Market Driving Tape Growth Majority of Data is Stored on Tape

- Storage for archive and retention is a \$3B Market growing to over \$7B in 2017
 - Archive is distinct from primary or backup use case
 - Tape is established as primary storage tier for long-term retention

IDC Market Analysis. Worldwide Archival Storage Solutions Forecast: Archiving Needs Thrive in an Information-Thirsty World. (IDC #230762)

ORACLE

ORACLE

Storage Trends

Storage Technologies Areal Density Trends

ORACLE

11 Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

11

DNA Storage Demo¹

- 2.2 PB per gram
 - $\sim 100,000$ Gb / inch ² equivalent areal density, see reference²
 - ~ 100 times more areal density than disk
- \$12,400/MB
 - $\sim 400,000,000$ times more cost than tape
- "Two weeks to reconstruct their five files, although with better equipment it could be done in a day"
 - ~ 0.6 Bytes/sec data rate based on 739 KB stored in demo
 - $\sim 400,000,000$ times slower than tape
- Longevity could be an issue³
 - 1 <u>http://www.economist.com/news/science-and-technology/21570671-archives-could-last-thousands-years-when-stored-dna-instead-magnetic</u>
 - 2 http://uw.physics.wisc.edu/~himpsel/memory.html
 - 3 http://www.rndsystems.com/MiniReview MR03 DNADamageResponse.aspx

ORACLE

Storage Technologies Areal Density Trends

Tape gets its capacity by having 1000X the recording surface area comparing a 1/2 inch cartridge to a 3 1/2 inch disk.

ORACLE

13 Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

13

Tape & Disk Data Storage Price Trends

Disk Drive Price Trends¹

ORACLE

Magnetic Recording Definitions

ORACLE

A Closer Look at the Magnetic Layer (grains or particles)

ORACLE

Smaller bits require smaller grains for required SNR

However, smaller grains have a higher probability of reversing over time

Neel-Arrhenius law gives: Mean time to randomly flip grain due $au_N = au_0 \exp\left(\frac{KV}{k_BT}\right)$ to thermal fluctuations

V is the volume of the grain, T is the temperature and K is the grain's magnetic anisotropy energy

1. Dobisz et al. Patterned Media: Nanofabrication Challenges of Future Disk Drives, Proceedings of the IEEE, Vol. 96, No. 11, November 2008

 $\frac{KV}{k_PT}$ > 60 for good thermal stability, 10 year data life ^{1,2}

 $\frac{KV}{k_BT}$ > 90 for today's tape ³, 30 year data life

- Weller et al. Thermal Effect Limits in Ultrahigh-Density Magnetic Recording, IEEE Transactions on Magnetics, VOL. 35, NO. 6, November 1999
- 3. Watson et al. Investigation of Thermal Demagnetization Effects in Data Recorded on Advanced Barium Ferrite Recording Media, IEEE Transactions on Magnetics, Vol. 44, No. 11, November. 2008

ORACLE

Disk Storage

ORACLE

Disk Magnetic Recording Tri-Lemma Review

- Smaller bits => Smaller grains for required SNR
- Smaller grains => Higher Hc¹ for thermal stability
- Higher Hc => Can not write on the media

1. Hc is the media Coercivity, which is the strength of the magnetic field required to flip the magnetization in the media

ORACLE

Technologies Likely to be Introduced

- Helium Drives (2013, WD)¹
 - 40% capacity increase 4 platters -> 6 or 7 platters
- Shingled Drives (2013, WD, Seagate)¹
 - 20-25% areal density increase
- Heat Assisted Drives (2014, Seagate)¹
 - 60% areal density increase
- Bit Patterned Media (end of the decade, WD)²
 - 100% areal density increase
 - 1 <u>http://www.theregister.co.uk/2013/02/12/seagate_hamr/</u>
 - 2 <u>http://www.hgst.com/press-room/2013/hgst-reaches-10-nanometer-patterned-bit-milestone-nanotechnology-process-will-double-todays-disk-drive-data-density</u>

ORACLE

Bit Patterned Media Concept

HAMR Concept

Laser heats media reducing media Hc so head magnetic field can write media

ORACLE

Wide tracks are partially overwritten to get narrower tracks

ORACLE

Disk Drive Manufacturers Family Tree

Tape Storage Trends

ORACLE

Technology Marches Forward

10 TB Example Over 15 Years

INSIC 2012 Tape Roadmap

- Generated every 3-4 years
- Roadmap Developed by Consensus
- 2012 Roadmap
 - Technical section lead by Bob Raymond
 - 16 Industry Companies
 - 8 Research Universities
 - Total of 75 participants
- Published in 2012
 - www.insic.org

The Ultimate Archive Media

StorageTek T10000 T2 Media is Formulated using Barium Ferrite magnetic particles and Aramid substrate

- BaFe has been shown to have superior life for long term applications
- 30 year accelerated tests show no change in magnetic data retention compared to current MP media¹

¹http://www.fujifilm.com/news/n100910.html

ORACLE

Hardware and Software

ORACLE

Engineered to Work Together

