
Algorithmic Choices that Improve Hardware
Utilization and Accuracy

Matthew Norman
Oak Ridge Leadership Computing Facility

https://mrnorman.github.io

https://mrnorman.github.io/

The Challenge of Accelerated Computing

• Must reduce power consumption
• Less cache
• Slower memory clock
• Wider memory bus
• Compute power >> Bandwidth

• Nvidia V100 GPU
• Capable of 15 teraflop/s (single precision)
• Can only feed in 225 billion single floats per second
• Most FP operations require two floats per operation
• Bandwidth is 134x too slow

The Challenge of Accelerated Computing

• The Cray-1 Vector Machine (1975)
• 160 megaflop/s
• 20 million single floats per second
• Bandwidth only 16x too slow

• We’ve been here before, but not this extremely

What Do We Need From Algorithms?

• We need more computations per data fetch (Compute Intensity)
• GPUs have a small amount of fast on-chip cache
• Load a small amount of data from main memory
• Perform many computations within cache before writing back to memory

• We need less algorithmic dependence
• Each global synchronization kicks your data out of cache
• Each global loop through the data has a roughly fixed cost

• You pay for out-of-cache data accesses, not computations

• We need less data movement over network
• Network fabric is very slow compared to on-node memory
• Want as few transfers as possible and as small as possible

The Euler Equations

• Euler equations govern atmospheric dynamics
• Conservation of mass, momentum, & energy with gravity source term
• Hyperbolic system of conservation laws

• Waves travel at the speed of wind and the speed of sound

The Euler Equations

Upwind Finite-Volume Spatial Discretization

• Finite-Volume Algorithm
• Solution is a set of non-overlapping cell averages
• Cell average updates based on cell-edge fluxes
• Use upwind Riemann solver to determine fluxes
• Reconstruct intra-cell variation from surrounding “stencil” of cells

• Advantages
• Conserves variables to machine precision
• Large time step (CFL=1)
• Treats each Degree Of Freedom individually (accuracy)
• Stable for non-shock Euler eqns without added dissipation

Weighted Essentially Non-Oscillatory Limiting (WENO)

• WENO Algorithm
• Compute multiple polynomials using multiple stencils
• Weight the most oscillatory polynomials the lowest
• Custom low-dissipation implementation (Norman & Nair, 2019, JAMES)

• Advantages
• Requires no additional data when used with Finite-Volume
• Very accurate and effective at limiting oscillations

𝒑𝟏 𝒙

𝒑𝟐 𝒙

𝒑𝟑 𝒙

𝒑𝒉𝒊𝒈𝒉−𝒐𝒓𝒅𝒆𝒓 𝒙

Arbitrary DERivatives (ADER) Time Discretization

• ADER Algorithm
• PDE itself translates spatial variation into temporal variation

•
𝜕𝑞

𝜕𝑡
= −

𝜕𝑞

𝜕𝑥
Differentiation gives higher-order time derivatives

𝜕𝑞

𝜕𝑡
= −

𝜕𝑞

𝜕𝑥
→

𝜕2𝑞

𝜕𝑡2
=
𝜕2𝑞

𝜕𝑥2
→

𝜕3𝑞

𝜕𝑡3
= −

𝜕3𝑞

𝜕𝑥3
• Use Differential Transforms for greater efficiency for non-linear PDEs

• Advantages
• Requires no additional data for high-order time integration
• Automatically propagates WENO limiting through time dimension
• Allows larger time step than existing explicit ODE time integrators

• Courant number of 1 for FV
• More accurate than existing ODE time integrators

Algorithm Summary

• Reconstruct variation from stencil

• Apply WENO limiting

• Compute high-order ADER time-average

• Compute upwind fluxes

• Update the cell average from fluxes

• Nearly all computations use only a small stencil of data
• Significant compute intensity

Accuracy

• 9th-order has 6x more computations than 3rd-order (hardware counters)
• But it only costs 45% more on GPUs

3rd-Order 9th-Order

20.9 seconds 30.3 seconds

Robustness

Robustness

Robustness

Robustness

Robustness

KE spectra
• 2-D simulation

NoLim: 26.2 sec
WENO: 30.3 sec

WENO has 16x more
computations than no
limiting (HW counters)

But it’s only 15% more
expensive on GPUs

Performance (Most Expensive GPU Kernel)

Nvidia V100 GPU
• 80% peak flop/s
• 11.9 trillion flop/s

AMD MI60 GPU
• 40% peak flop/s
• 5.9 trillion flop/s

C++ Performance Portability Approach

• Kernels specified as C++ Lambdas describing the work of one thread
• Simply CUDA with different syntax
• Burden of exposing parallelism is on the developer
• Once exposed, parallelism is very portable across architectures

• Use multi-dimensional array classes for data
• Object-bound dimension sizes → robust bounds checking
• “Shallow copy” for easy GPU portability (allows Lambda capture-by-value)

• Launchers run the kernel with multiple backend options

C++ Performance Portability Approach

C++ Performance Portability Approach

Parallelism

Kernel

C++ Performance Portability Approach

C++ Performance Portability Approach

Parallelism

Kernel

C++ Performance Portability Approach

• CPU Backend

C++ Performance Portability Approach

• Nvidia CUDA Backend

C++ Performance Portability Approach

• AMD HIP Backend

AMD GPU Status

• Cloud dycore running efficiently on AMD MI60 GPUs using YAKL
• github.com/mrnorman/awflCloud
• github.com/mrnorman/YAKL (“Yet Another Kernel Launcher”)
• Eventual transition to Kokkos kernel launchers (“parallel_for”)

• miniWeather Fortran code running on AMD GPUs with OpenMP 4.5
• Using the Mentor Graphics gfortran compiler development
• github.com/mrnorman/miniWeather

• SCREAM physics will use C++ & Kokkos
• Kokkos HIP backend coming soon

• Sending kernels to AMD / Mentor Graphics to improve maturity
• UKMO Psyclone generated Fortran kernels
• RRTMGP OpenMP 4.5 port (coming soon)

https://github.com/mrnorman/awflCloud
https://github.com/mrnorman/YAKL
https://github.com/mrnorman/miniWeather

Future Work: Handling Stiff Acoustics

• Vertical acoustic stiffness
• 100:1 aspect ratio for horiz / vertical grid spacing at surface
• Sound waves is 370 m/s, but wind at surface is order 1 m/s

• Approach 1: First-order upwind acoustics
• Need accurate, large time step IMplicit-EXplicit (IMEX) Runge-Kutta
• ≥ 4 tridiagonal solves per time step

• Approach 2: Infinite sound speed; Poisson pressure solve
• Only 1 tridiagonal solve per time step for pressure
• Diagnostic density advected with the other variables

• Approach 3: High-order coupled implicit vertical
• Potentially better on GPU, but much more time consuming
• Requires many loop iterations through data

Summary

• Download this presentation
• tinyurl.com/norman-mc19

https://tinyurl.com/norman-mc19

