
OpenMP Current Status and 
Future Directions

Yun (Helen) He, Michael Klemm, Bronis R. De Supinski



Architecture Review Board
• The mission of the OpenMP ARB 

(Architecture Review Board) is to standardize 
directive-based multi-language high-level 
parallelism that is performant, productive
and portable.

• 32 members currently.  More in the work to 
join.

• Please consider joining us too so you can also 
contribute!

2



OpenMP Programming Model

OpenMP is a modern directive-based programming model:
 Multi-level parallelism supported (coprocessors, threads, SIMD)
 Task-based programming model is the modern approach to parallelism
 Powerful language features for complex algorithms
 High-level access to parallelism; path forward to highly efficient programming

Using the hybrid MPI/OpenMP programming model is one of the main 
choices 
 for running scientific applications on many hardware architectures such as Intel Xeon, 

Xeon Phi, and Nvidia GPUs. 

3



OpenMP Roadmap
OpenMP has a well-defined roadmap:
 Last officially released versions: 4.0 (July 2013), 4.5 (Nov 2015)
 5-year cadence for major releases
 One minor release in between
 (At least) one Technical Report (TR) with feature previews in every year
 Current release version is 4.5 

Nov’17 Nov’18 Nov’19 Nov’20 Nov’21 Nov’22 Nov’23

TR6 OpenMP 5.0

Public Comment 
Draft (TR7)

OpenMP 5.x TR9* TR10* OpenMP 6.0

* Numbers assigned to TRs may change if additional TRs are released.

TR8*

4



Current Status 
(OpenMP 4.5 and Earlier)

5



Versions 4.0 and 4.5
OpenMP has been significantly modernized since the OpenMP 4.0 (July 2013) and 

OpenMP 4.5 (Nov 2015) specification releases. 
Major additions include: SIMD, task dependencies, task groups, thread affinity, user 

defined reductions, taskloop, doacross.
 Target device support was first introduced in OpenMP 4.0 and was the focus for 

enhancement for OpenMP 4.5. 

Thread Affinity

doacross

SIMD Target Device Support Task Groups 

TaskloopUser Defined Reductions Task Priority

Hint for locks and critical Fortran 2003 Support

Task Dependencies

6



 Device constructs
 SIMD constructs
 Cancellation
 Task dependences and task groups 
 Thread affinity control
 User-defined reductions
 Initial support for Fortran 2003
 Support for array sections (including in C and C++)
 Sequentially consistent atomics
 Display of initial OpenMP internal control variables

OpenMP 4.0 Major Additions

7



 Unstructured data mapping
 Asynchronous execution
 Scalar variables are firstprivate by default
 Improvements for C/C++ array sections
 Device runtime routines: allocation, copy, etc.
 Clauses to support device pointers
 Ability to map structure elements
 New combined constructs
 New way to map global variables (link)

OpenMP 4.5 Focused on Device Support 

8



 Many clarifications and minor enhancements
SIMD extensions
Addition of schedule modifiers: simd, monotonic, nonmonotonic
Clarifications of thread affinity policies
Grammar for OMP_PLACES
Support for if clause on combined/composite constructs
Reductions for C/C++ arrays
Runtime routines to support affinity

 Support for doacross loops 
 Divide loop into tasks with taskloop construct
 Hints for locks and critical sections
 Continues to increase Fortran 2003 support
 Task priorities
 Improved support for C++ reference types
 New terms to simplify discussion of new features

OpenMP 4.5 Other New Features

9



Vectorization Before OpenMP 4.0 

Programmers had to rely on auto-vectorization…
… or to use vendor-specific extensions
 Programming models (e.g., Intel® Cilk™ Plus)
 Compiler pragmas (e.g., #pragma vector)
 Low-level constructs (e.g., _mm_add_pd())

10

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;
}

You need to trust your 
compiler to do the 

“right” thing.



SIMD Version of Scalar Product

void sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp for simd reduction(+:sum)    
for (int k=0; k<n; k++)   

sum += a[k] * b[k];
return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

11



#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

#pragma omp declare simd
float distsq(float x, float y) {

return (x - y) * (x - y);
}

void example() {
#pragma omp parallel for simd

for (i=0; i<N; i++) {
d[i] = min(distsq(a[i], b[i]), c[i]);

}   }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1):
vminps %zmm1, %zmm0, %zmm0
ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):
vsubps %zmm0, %zmm1, %zmm2
vmulps %zmm2, %zmm2, %zmm0
ret

vmovups (%r14,%r12,4), %zmm0
vmovups (%r13,%r12,4), %zmm1
call _ZGVZN16vv_distsq
vmovups (%rbx,%r12,4), %zmm1
call _ZGVZN16vv_min

12



Thread Affinity Control

OpenMP 4.0 added OMP_PLACES environment variable to control thread 
allocation
 Can be threads, cores, sockets, or a list with explicit CPU ids.

OMP_PROC_BIND controls thread affinity within and between OpenMP 
places
 OpenMP 3.1 only allows TRUE or FALSE.
 OpenMP 4.0 still allows the above. Added options: close, spread, master.

13



Task Synchronization w/  Dependencies
int x = 0;
#pragma omp parallel
#pragma omp single
{

#pragma omp task depend(in: x)
std::cout << x << std::endl;

#pragma omp task
long_running_task();

#pragma omp task depend(inout: x)
x++;

}

OpenMP 4.0int x = 0;
#pragma omp parallel
#pragma omp single
{

#pragma omp task
std::cout << x << std::endl;

#pragma omp task
long_running_task();

#pragma omp task
x++;

}

OpenMP 3.1

#pragma omp taskwait

14

t1

t2

t3

t1

t2

t3



taskloop Example: saxpy Operation

 Manual transformation is cumbersome and 
error prone

 Applying blocking techniques for large loops 
can be tricky

 taskloop: improved programmability

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS) ? SIZE : i+TS;
#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;
}

}

for (i = 0; i<SIZE; i+=1) {
A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {
UB = SIZE < (i+TS) ? SIZE : i+TS;
for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;
}

}

#pragma omp taskloop grainsize(TS)
for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;
}

taskloopblocking

15



Parallelizing doacross Loop

 Help with cross-
iteration 
dependencies

Use “ordered” 
clause to ensure 
structured 
blocks are 
executed on 
lexical order

16

Example courtesy of Tim Mattson



Device Model

OpenMP 4.0 supports accelerators/coprocessors
Device model:
 One host
 Multiple accelerators/coprocessors of the same kind

Host
Coprocessors

17



Example
#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

{

#pragma omp target device(0) 

#pragma omp parallel for

for (i=0; i<N; i++)

tmp[i] = some_computation(input[i], i);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0) 

#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)

res += final_computation(input[i], tmp[i], i)

}

host
target

host
target

host

18



Multi-level Device Parallelism

19

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)); 
float *y = (float*) malloc(n * sizeof(float)); 
// Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)

#pragma omp distribute
for (int i = 0; i < n; i += num_blocks){

#pragma omp parallel for
for (int j = i; j < i + num_blocks; j++) {

y[j] = a*x[j] + y[j];
} } } }

all do the same

workshare (w/o barrier)

workshare (w/ barrier)



Device Parallelism: Combined Constructs

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)); 
float *y = (float*) malloc(n * sizeof(float)); 
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp teams distribute parallel for \
num_teams(num_blocks) num_threads(bsize)

for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

}

20



Future Directions
(OpenMP 5.0 and Beyond)

21



Version 5.0 is on its Way (Release @ SC18)

OpenMP 5.0 will introduce new powerful features to improve 
programmability

loop Construct

C++14 and C++17 support

Fortran 2008 support

Detachable Tasks

Unified Shared Memory

Data Serialization for Offload

Meta-directivesParallel Scan

Improved Task Dependences

“Reverse Offloading”Display Affinity

Collapse non-rect. Loops
Multi-level Parallelism

Task Reductions Memory Allocators

Dependence Objects Tools APIs: OMPD,OMPT

Task-to-data Affinity

User Defined Function Variants
22



 Included 24 passed tickets
 Major new feature was performance tool support (TR2+)
 Some significant extensions to existing functionality
Support for task reductions, including on taskloop construct
Implicit declare target directives and other verbosity 

reducing changes

 Many clarifications and minor enhancements, including:
Use of any C/C++ lvalue in depend clauses
Addition of depend clause to taskwait construct
Addition of conditional modifier to lastprivate clause
Permits declare target on C++ classes with virtual members
Clarification of declare target C++ initializations

TR4 was released in November 2016

23



 Includes 88 tickets beyond those in TR4 (112 tickets total)
 Many major additions and significant enhancements

Adds memory allocators to support complex memory hierarchies
User defined mappers provide deep copy support for map clauses
Supports better control of device usage and specialization for devices

Can require unified shared memory
Can use functions specialized for a type of device

Adds concurrent construct to support compiler optimization
Adds support to display runtime thread affinity 
Support for third-party (debugging) tools
Adds C11, C++11 and C++14 as normative base languages
Expands task dependency mechanism for greater flexibility and control
Release/acquire semantics added to memory model 
Supports collapse of imperfectly nested loops
Support for != on C/C++ loops

 Many clarifications and other minor enhancements

TR6 was released in November 2017

24



 Includes 131 tickets beyond those in TR6 (243 tickets total)
 Many major additions and significant enhancements

Support for metadirectives and function variants
Device refinements including reverse offload 
Revises concurrent construct to be loop construct
Allows teams construct outside of target (i.e., on host) 
Supports task affinity, task modifier on reductions on other constructs, 

depend objects and detachable tasks
Adds C++17 and Fortran 2008 as normative base languages, completes 

Fortran 2003
Supports request to quiesce OpenMP threads
Supports collapse of non-rectangular loops
Adds scan operations (similar to reductions)
Expands and refines memory allocator support
Extensions and refinements of deep copy support
Supports C/C++ array shaping

 Many clarifications and other minor enhancements

TR7 was released in July 2018

25



Task Reductions

Task reductions extend traditional 
reductions to arbitrary task graphs

Extend the existing task and 
taskgroup constructs

Also work with the taskloop
construct

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{

res += node->value;
}
node = node->next;

}
}

}
}

26



Existing Parallel Loop Constructs

Existing parallel loop constructs are tightly bound to execution model:

join

distribute work

barrier

fork

#pragma omp for
for (i=0; i<N;++i) {…}

#pragma omp simd
for (i=0; i<N;++i) {…}

…

#pragma omp taskloop
for (i=0; i<N;++i) {…}

generate tasks

taskwait

27



The new loop Construct 
The loop construct asserts to the compiler that the iterations of a loop are 

free of dependencies and may be run concurrently in any order.
 Each iteration execute exactly once.

 It is meant to let the OpenMP implementation choose the right 
parallelization scheme.  
 Can be used on both host and device.

28

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)); 
float *y = (float*) malloc(n * sizeof(float)); 
// Define scalars n, a, b & initialize x, y

#pragma omp target map(to:x[0:n]) map(tofrom:y)
{

#pragma omp loop
for (int i = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
}

}



 Getting the optimal process and thread affinity is critical to ensuring optimal 
performance and is an essential step before starting any code optimization 
attempts.

 Automatic display of affinity when OMP_DISPLAY_AFFINITY environment 
variable is set to TRUE. 

 The format of the output can be customized by setting the 
OMP_AFFINITY_FORMAT environment variable to an appropriate string or 
use the runtime set/get routines

 Flexible runtime API calls omp_display_affinity() or omp_capture_affinity() 
to display or capture thread affinity info at selected locations within code. 

 Sample OMP_AFFINITY_FORMAT= "thrd_level= %L, parent_id= %A, thrd_id= 
%T, thrd_affinity= %A"

 Sample output
thrd_level= 1, parent_thrd= 0,thrd_id= 0, thrd_affinity= 0,2,4,6 
thrd_level= 1, parent_thrd= 0,thrd_id= 1, thrd_affinity= 1,3,5,7 

Display Thread Affinity at Runtime

29



Memory Allocators

30



Example: Using Memory Allocators

31

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high_bw_mem_alloc)
#pragma omp allocate(b) // controlled by OMP_ALLOCATOR and/or omp_set_default_allocator
double *p = (double *) malloc(N*M*sizeof(*p));

#pragma omp parallel private(a)
{

some_parallel_code();
}

#pragma omp target firstprivate(c)
{

#pragma omp parallel private(a)
{

some_other_parallel_code();
}

}

omp_free(p);
}

allocate(my_allocator:a)

allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr

allocate(omp_high_bw_mem_alloc:a)

omp_alloc(N*M*sizeof(*p), my_allocator);



Requires Unified Shared Memory
• Single address space over CPU and GPU memories
• Data migrated between CPU and GPU memories transparently to 

the application - no need to explicitly copy data

32

// No data directive needed.
#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++)
{
#pragma omp target teams distribute parallel for

for (j=0; j<ARRAY_SIZE; j++) {
a[j] = b[j] + scalar * c[j];

}
}}



 OpenMP 4.0 added Fortran 2003 to list of base 
language versions

 OpenMP 4.5 has a list of unsupported Fortran 2003 
features
List initially included 24 items (some big, some small)
List has been reduced to 10 items
List in specification reflects approximate OpenMP 5.0 priority
Priorities determined by importance and difficulty

 OpenMP 5.0 will fully support Fortran 2003

Fortran 2003 Support in OpenMP

33



 OpenMP 5.0 will add Fortran 2008 (along with C11, 
C++11, C++14, and C++17) as normative 
references

 OpenMP 5.0 (see released TR7 specifications) has 
a list of unsupported Fortran 2008 features

 OpenMP 5.1 will work through the list to add more 
support. Some top priority features to consider are:
DO CONCURRENT
Coarrays
Submodules

Fortran 2008 Support in OpenMP

34



 Deeper support for descriptive and prescriptive control
 More support for memory affinity and complex hierarchies
 Support for pipelining, other computation/data associations
 Continued refinements and improvements to device support
 Unshackled threads
 Event-driven parallelism
 Completing support for new normative references
 Fortran: support assumed-type (type(*)) 

Some Potential Topics for OpenMP 5.1 or 6.0 

35



Resources
Lots of information available at ARB’s website
 Specifications, technical reports, summary cards
 Compilers and Tools 
 Tutorials, presentations, and publications

OpenMP Book
OpenMP Events
 Supercomputing Conference
 OpenMPCon Workshop
 IWOMP Workshop
 UK OpenMP Users’ Conference

http://www.openmp.org

36



SC18 Tutorials and BoF

 Enjoy a promo video about OpenMP history and SC18 tutorials !
 https://www.youtube.com/watch?v=sncF6s7xym4

 Tutorial: OpenMP Common Core: A “Hands-On” Exploration 
 Tim Mattson, Alice Koniges. Yun (Helen) He, David Eder

 Tutorial: Mastering Tasking with OpenMP
 Michael Klemm, Sergi Mateo, Christian Terboven, Xavier Teruel, Bronis de Supinski

 Tutorial: Advanced OpenMP: Performance and 5.0 Features
 James Beyer, Michael Klemm, Kelvin Li, Christian Terboven, Bronis de Supinski,  Ruud van der Pas

 Tutorial: Programming Your GPU with OpenMP: A Hands-On Introduction
 Simon McIntosh-Smith, Tim Mattson

OpenMP BoF

37

https://www.youtube.com/watch?v=sncF6s7xym4


About OpenMP History and SC18 Tutorials

38





	OpenMP Current Status and Future Directions
	Architecture Review Board
	OpenMP Programming Model
	OpenMP Roadmap
	Current Status �(OpenMP 4.5 and Earlier)
	Versions 4.0 and 4.5
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Vectorization Before OpenMP 4.0 
	SIMD Version of Scalar Product
	SIMD Function Vectorization
	Thread Affinity Control
	Task Synchronization w/  Dependencies
	taskloop Example: saxpy Operation
	Parallelizing doacross Loop
	Device Model
	Example
	Multi-level Device Parallelism
	Device Parallelism: Combined Constructs
	Future Directions�(OpenMP 5.0 and Beyond)
	Version 5.0 is on its Way (Release @ SC18)
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Task Reductions
	Existing Parallel Loop Constructs
	The new loop Construct 
	Slide Number 29
	Slide Number 30
	Example: Using Memory Allocators
	Requires Unified Shared Memory
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Resources
	SC18 Tutorials and BoF
	About OpenMP History and SC18 Tutorials

