Multigrid and Mixed-Precision: Fast Solvers for Weather and Climate Models.

Christopher Maynard

- Scientific Software Engineer Met Office, Exeter, UK
- Associate Professor of Computer Science.

University of Reading

Semi-implicit time-integration schemes, commonly used in Numerical Weather Prediction and Climate models, require a global matrix inversion of some kind. The linear solvers employed to do so must be fast and capable of running on highly parallel and complex supercomputers.
Consequently there is a complex interplay between the algorithm and its implementation. In this presentation the use of mixed-precision arithmetic and a Geometric Multigrid Algorithm in the Met Office's Unified Model and LFRic Model are described and performance analysed.

It was the best of times, it was the worst of times

Apologies to Charles Dickens ...

Mixed-precision arithmetic in the ENDGame dynamical core of the Unified Model, a numerical weather prediction and climate model code C.M. Maynard and D.N. Walters. Comp. Phys. Comm. V244 Nov 2019 69--75

Performance of multigrid solvers for the mixed finite element dynamical core, LFRic
C.M. Maynard, T. Melvin, E.H. Müller in Prep.

© Metoftice Accuracy and Precision

Numerical algorithms have a defined accuracy. How fast they to the converge to continuous differential equations

Computers use floating-point arithmetic
Variable accuracy c.f. to real numbers Not associative Accumulated round-off error More precision \rightarrow bigger data type
$\pi=3.14000000001$ Precise but not accurate
$3<\pi<4$ Accurate but not precise (John Gustafason)
Most scientific applications, especially weather and climate use 64-bit arithmetic
Is this necessary? 32-bit faster (memory/cache CPU, GPU etc)

ミMet Office Semi-implicit schemes

Lon-Lat grid \rightarrow polar singularity Near poles grid points very close together Explicit time-stepping scheme unfeasibly short time-step for NWP
Semi-implicit schemes treat fast acousticgravity modes implicitly
In combination with semi-Lagrangian advection, SI allows stable integration around pole
Long, but computationally expensive timesteps
Global matrix inversion

Met Office

SI ... expensive, but can take long timesteps

MetOffice Helmholtz solve:Pressure correction

Equation takes the form
$A \cdot \mathbf{x}=\mathbf{b}$
Where A is a large, sparse matrix b contains forcing terms

N1280 Lon-Lat mesh
$\sim 10 \mathrm{Km}$ resolution at mid-latitudes

$$
(2 \times 1280) \frac{\times(3 \times 1280)}{2} \times 70 \approx 350 M
$$

For Semi-implicit time-stepping scheme, solver is part of a larger, nonlinear system solution procedure
Accuracy of the solve is dictated stability of time-stepping scheme FD $\sim \nabla p \sim 2^{\text {nd }}$ order \rightarrow limit to effect of accuracy of solve on pressure Once solver error is sufficiently small, discretisation errors dominate

Inputs: $\boldsymbol{x}, \boldsymbol{r}, \epsilon_{\text {tol }}, \delta_{\text {min }}$ $\delta=\max \left(\|\boldsymbol{r}\|, \delta_{\text {min }}\right)$;
$\boldsymbol{p}=\boldsymbol{v}=0$;
$\boldsymbol{r}=\boldsymbol{r}-\boldsymbol{A x} ; \boldsymbol{r}_{0}=\mathbf{r}$;
$\alpha=\omega=n=1$;
for $k=1,2, \ldots$ do
$\rho=\left(\boldsymbol{r}, \boldsymbol{r}_{0}\right) ; \beta=\alpha \rho /(n \omega) ;$
$\boldsymbol{t}=\boldsymbol{r}-\beta \omega \boldsymbol{v} ; \boldsymbol{s}=\boldsymbol{C} \boldsymbol{t} ;$
$\boldsymbol{p}=\boldsymbol{s}+\beta \boldsymbol{p} ; \boldsymbol{v}=\boldsymbol{A} \boldsymbol{p} ;$
$n=\left(\boldsymbol{v}, \boldsymbol{r}_{0}\right) ; \alpha=\rho / n$;
if $\omega<10^{-12}$ then
| Convergence problem ω too small. end
$\boldsymbol{s}=\boldsymbol{r}-\alpha \boldsymbol{v} ; \tilde{\boldsymbol{s}}=\boldsymbol{C s} ; \boldsymbol{t}=\boldsymbol{A} \tilde{\boldsymbol{s}} ;$
$\omega=(\boldsymbol{t}, \boldsymbol{s}) /\|\boldsymbol{t}\|^{2}$;
$\boldsymbol{x}=\boldsymbol{x}+\alpha \boldsymbol{p}+\omega \tilde{\boldsymbol{s}} ; \boldsymbol{r}=\boldsymbol{s}-\omega \boldsymbol{t} ;$
$n=\rho ; \epsilon=\|\boldsymbol{r}\| / \delta ;$
If $\epsilon<\epsilon_{\text {tol }}$ exit;

Post-conditioned BiCGStab

Halting criterion: norm of residual vector

$$
\|\mathbf{r}\|=\left\|A \cdot \mathbf{x}_{i}-\mathbf{b}\right\|
$$

Stop when

$$
\epsilon=\frac{\|r\|}{\delta}<\epsilon_{t o l}
$$

If $\epsilon_{\text {tol }} \gg \epsilon_{32}$

Where 32-bit Unit-of-least-precision (ULP) is $\sim 1.0 \times 10^{-7}$
Then 32 -bit arithmetic is sufficient.
64-bit arithmetic won't improve accuracy of solution

$$
\epsilon_{t o l}=\left\{10^{-3}, 10^{-4}\right\}
$$

Met Office Idealised solver

Examine effect of precision on convergence

$$
\begin{aligned}
& \|\mathbf{r}\|=\left\|A \cdot \mathbf{x}_{i}-\mathbf{b}\right\| \\
& \text { c.f. 32-64- and 128-bit } \\
& \text { arithmetic } \\
& \text { 32-bit takes more iterations } \\
& \text { for residual fall } \\
& \text { Iteration gap } \\
& \text { Still converges }
\end{aligned}
$$

Met Office Orthogonality

$$
\mathcal{K}_{p}=\operatorname{span}\{p, A p, \cdots\}
$$

$$
\mathcal{O}\left(\mathcal{K}_{p}\right)=p \cdot A p
$$

$$
\Delta O_{P}=\frac{\operatorname{abs}\left(\mathrm{O}_{\mathrm{P}}-\mathrm{O}_{128}\right)}{\operatorname{abs}\left(\mathrm{O}_{\mathrm{P}}+\mathrm{O}_{128}\right)}
$$

Zero \rightarrow orthogonal One \rightarrow no orthooinality 32-bit (S) diverges earlier than 64-bit (D)

Met Office
 Mixed-precision in the UM 圈 Univesityof

Solver implemented as mixed precision
Pressure field was kept as 64-bit
32-bit increments
Ease of interfacing to model
11 N1280 operational cfgs
First time-step, first solve 96 nodes Cray XC40 12 MPI ranks/3 OMP threads

Metoffice When does it break?

Tighten tol to 10^{-5} Slow convergence hundreds of iters BiCGstab does not guarantee monotonic convergence Jumps in value of residual
BiCGStab is breaking down
Mixed-precision fares worse - sometimes fails

\approx Met Office

Occasional problems at 10-4
Slow convergence (hundreds of iters) - or even failures (divide by near zero) Scalars \rightarrow zero symptomatic of algorithm failing
In Mixed-precision global sums reverted to 64-bit arithmetic
Negligible cost (global sum is latency bound - sum is for single scalar)
Prevents failure, but slow convergence remains
In operations fixed iteration count limit imposed with full restart of solver
III conditioned problem arises from issues with "noise" in horizontal wind fields near poles
Original cfgs run with 10^{-3} tol, but problems in other parts of model Tighter solver convergence helps but has its own problems Solutions? i) Polar cap (transport across the poles)
ii) Multigrid (see later)

\approx Metoffice Conclusions I

Efficiency (speed), accuracy and stability are all important considerations
Reduced precision can provide significant performance benefits (almost $2 x$ for 32-bit versus 64-bit)
UM operations at Met Office runs in mixed-precision
Care is needed as complex interplay between round-off and other numerical errors

Especially where Numerical algorithms experience other problems

\approx Metoffice The Unified Model

Uses Lon-Lat grid Scientifically very good Good computational performance

Very High

Resolution scaling 6.5 Km resolution

Lon-lat grid is preventing scaling
10 km resolution (mid-latitudes) $\rightarrow 10 \mathrm{~m}$ at poles

\approx Met Office

GungHo Issues

- How to maintain accuracy of current model on a GungHo grid?
- Principal points about current grid are:
> Orthogonal, Quadrilateral, C-grid
- Mixed Finite elements
> Same layout as current C-grid
$>$ Not orthogonality condition
$>$ Gives consistent discretisation

smetoffice Mixed Finite Elements

Mixed Finite Element method gives

- Compatibility: $\nabla \times \nabla \varphi=0, \nabla \cdot \nabla \times \boldsymbol{v}=0$
- Accurate balance and adjustment properties
- No orthogonality constraints on the mesh
- Flexibility of choice mesh (quads, triangles) and accuracy (polynomial order)

Metoffice Mixed Finite Element

$$
\mathbb{W}_{0} \xrightarrow{\nabla} \mathbb{W}_{1} \xrightarrow{\nabla \times} \mathbb{W}_{2} \xrightarrow{\nabla \cdot} \mathbb{W}_{3}
$$

\mathbb{W}_{0}	Pointwise scalars	
\mathbb{W}_{1}	Circulation Vectors	Vorticity
\mathbb{W}_{2}	Flux Vectors	Velocity
\mathbb{W}_{3}	Volume integrated Scalars	Pressure, Density
\mathbb{W}_{θ}	Pointwise scalars	Potential Temperature

Met Office
 Gungho Discretisation

mum Reading

Inspired by iterative-semi-implicit semiLagrangian scheme used in UM

Scalar transport uses high-order, upwind, explicit Eulerain FV scheme

Wave dynamics (and momentum transport) use iterative-semi-implicit, lowest order mixed finite element method (equivalent to C-grid/Charney-Phillips staggering)

$$
\begin{aligned}
\delta_{t} \mathbf{u} & =-\overline{(2 \Omega+\nabla \times \mathbf{u}) \times \mathbf{u}+\nabla(K+\Phi)+c_{p} \theta \nabla \Pi}{ }^{\alpha} \\
\delta_{t} \rho & =-\nabla \cdot\left[\mathcal{F}\left(\rho^{n}, \overline{\mathbf{u}}^{1 / 2}\right)\right] \\
\delta_{t} \theta & =-\mathcal{A}\left(\theta^{n}, \overline{\mathbf{u}}^{1 / 2}\right)
\end{aligned}
$$

$$
\bar{F}^{\alpha} \equiv \alpha F^{n+1}+(1-\alpha) F^{n}
$$

Metofice Time-stepping

Quasi-Newton Method: $\quad \mathcal{L}\left(\mathbf{x}^{*}\right) \mathbf{x}^{\prime}=-\mathcal{R}\left(\mathbf{x}^{(k)}\right)$.
Linearized around reference state (previous time-step state) $x^{*} \equiv x^{n}$
Solve for increments on latest state: $x^{\prime} \equiv$ $x^{(k+1)}-x^{(k)}$
Semi-Implicit system contains terms needed for acoustic and buoyancy terms

$$
\mathcal{L}\left(\mathbf{x}_{\text {phys }}^{*}\right) \mathbf{x}_{\text {phys }}^{\prime}=\left\{\begin{array}{l}
\mathbf{u}^{\prime}-\mu\left(\frac{\mathbf{n}_{b} \cdot \mathbf{u}^{\prime}}{\mathbf{n}_{\cdot} \cdot \mathbf{z}_{\mathrm{b}}}\right) \mathbf{z}_{\mathrm{b}} \\
\quad+\tau_{u} \Delta t c_{p}\left(\theta^{\prime} \nabla \Pi^{*}+\theta^{*} \nabla \Pi^{\prime}\right) \\
\rho^{\prime}+\tau_{\rho} \Delta t \nabla \cdot\left(\rho^{*} \mathbf{u}^{\prime}\right) \\
\theta^{\prime}+\tau_{\theta} \Delta t \mathbf{u}^{\prime} \cdot \nabla \theta^{*} \\
\frac{1-\kappa}{\kappa} \frac{\Pi^{\prime}}{\Pi^{*}}-\frac{\rho^{\prime}}{\rho^{*}}-\frac{\theta^{\prime}}{\theta^{*}}
\end{array}\right.
$$

„Metoffice Time-stepping II

Solver Outer system with Iterative (GCR) solver

$$
\left(\begin{array}{cccc}
\frac{M_{2}^{\mu, C}}{D^{\rho}} & M_{3} & -P_{2 \theta}^{\Pi^{*}} & -G^{\theta^{*}} \\
P_{\theta 2}^{\theta^{*}} & & & \\
& -M_{3}^{\rho^{*}} & -P_{3 \theta}^{*} & M_{3}^{\Pi^{*}}
\end{array}\right)\left(\begin{array}{c}
\widetilde{u}^{\prime} \\
\tilde{\rho}^{\prime} \\
\widetilde{\theta}^{\prime} \\
\widetilde{\Pi}^{\prime}
\end{array}\right)=\left(\begin{array}{l}
-\mathcal{R}_{u} \\
-\mathcal{R}_{\rho} \\
-\mathcal{R}_{\theta} \\
-\mathcal{R}_{\Pi}
\end{array}\right)
$$

- Contains all couplings
- Preconditioned by approximate Schur complement for the pressure increment
- Velocity and potential temperature mass matrices are lumped

Met Office
 Multigrid

- Helmholtz system $H \Pi^{\prime}=R$ solved using a single Geometric-Multi-Grid V-cycle with block-Jacobi smoother
$H=M_{3}^{\Pi^{*}}+\left(P_{3 \theta}^{*} \grave{M}_{\theta}^{-1} P_{\theta 2}^{\theta^{*}, z}+M_{3}^{\rho^{*}} M_{3}^{-1} D^{\rho^{*}}\right)\left(\grave{M}_{2}^{\mu, C}\right)^{-1} G^{\theta^{*}}$.
- Block-Jacobi smoother with small number (2) of iterations on each level
- Exact (tridiagonal) vertical solve: \widehat{H}_{Z}^{-1}

$$
\tilde{\Pi}^{\prime} \hookleftarrow \widetilde{\Pi}^{\prime}+\omega \widehat{H}_{z}^{-1}\left(\mathcal{B}-H \tilde{\Pi}^{\prime}\right)
$$

Dedicated abstraction in F2K3 OO Similar to Lin. Alg Libs e.g. PETSc, DUNE-ISTL, Trillinios

Allows for easy implementation of sophisticated nested solver Multigrid preconditioner - reduce work for iterative solver

- faster and less global sums (better scaling)

```
si_operators()
```


Profile these components

MetOffice Initial Results

C192 cubed sphere with 30 L (~50Km) Baroclinic wave test Met Office Cray XC40 64 nodes (2304 cores) Mixed mode 6 MPI/6 OMP threads
c.f. $\|r\|=\|\mathbf{A} x-b\|$ Of Krylov 10-2
Before and after MG 3-level V-cycle

> SI \rightarrow long time-step as possible
> Stability is limited by vertical stability.
> $\mathrm{C} 192 \sim 50 \mathrm{Km}, \Delta \mathrm{t}=1200$
> $\mathrm{CFL}_{\mathrm{H}}=\mathrm{c}_{\mathrm{S}} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} \quad c_{s}=340 \mathrm{~m} / \mathrm{s}$
> $\mathrm{CFL}_{\mathrm{H}} \sim 8$

C1152 ~ 9Km and $\Delta \mathrm{t}=205 \mathrm{~s} \rightarrow \mathrm{CFL} \sim 8$ Baroclinic wave test (Again 30L)
Kr 10² cf 3-level MG
Up to 1536 nodes

Strong scaling on C1152 for 100 time-steps

Lower is better
MG is at least $2 x$ faster than Kr
Both show good scaling X -axis is logarithmic 96 : 1536 ~ 16x
55296 cores
$\operatorname{LV}=\{48,32,24,16,12\}^{2}$

Higher is better
Scaled from 96 nodes
Both show good scaling KR is better because 96 node is slow!

Strong scaling of Halo-Exchange

Lower is better
Data produced by CrayPAT 96 node MG runs our of memory
Less comms for MG Large variation due to Aries adaptive routing

Strong scaling of Global-Sum
Lower is better Both algs have global sums in outer solve, plus limited diagnostic Kr still has GS for inner solver $10^{-2} \rightarrow$ only a few iterations.
Very large variation due to Aries adaptive routing

Metoffice Matrix-vector

Strong scaling of Matrix-vector
Lower is better MG is much more efficient Much less work Used Schur-precon scaling to estimate MG 96 node cost No comms, hence good scaling

Metoffice Matrix-vector II

University of
Reading
Lower is better
X-axis is linear
Data are reversed
Shows cost of computation Scales linearly with problem size
Smallest problem size not much work c.f. with comms Fischer et al, suggests strong scaling limit is around LV~10000 (my interpretation) doi 10.2514/6.2015-3049

Matrix-vector versus problem size

Met Office Multigrid \& Mixed-precision Universityof

ENDGame WC

UM ENDGame N1280
Multigrid for Helmholtz solve.
Faster than Krylov (BiCGStab)
Big effect on solver
Polar singularity (Advection) spoils scaling
Lower precision helps both equally MG can help avoid convergence issues

LFRic solver, currently 64-bit Mixed-precision solver planned Coarse grids can be done in lower precision, especially comms (8-bit)

Complex interplay between accuracy, efficiency, algorithmi and implementation
64-bit arithmetic is expensive. Lower precision can with care be used without compromising accuracy - depending on algorithm and implementation
Choice of algorithm, such as Multigrid to avoid global sums or Redundant computation to reduce communication are in some some being deployed to exploit architectural features : scaling
Accelerator architectures will require specific algorithmic choices

C96 2 day Aquaplanet Surface moisture, Mid-level cloud SW heating

\#MetOffice Some names

工合 Gungho: Mixed finite element dynamical core

LFRic: Model infrastructure for next generation modelling

PSyClone: Parallel Systems code generation used in
Psyclone ${ }^{\text {E }}$ LFRic and Gungho

Un|Unified Model UM: Current modelling environment (UM parametrisations are being reused in LFRic

Dof living on shared (partitioned) entity (edge).
Receive contribution from owned and halo cell.
Redundant compute contribution in halo to shared dof.
Less communication

MPI only, 4 MPI ranks all have halos
Hybrid, 1 MPI task has a halo, 4 OpenMP threads share halo boundary-to-area scaling
\rightarrow Less work for OpenMP threads

rank 0

Point-wise computations (e.g. set field to a scalar) loop over dofs Looping to owned dofs \rightarrow halo exchange required for P2
Looping to annexed dofs is now transformation in Psyclone
Small increase in redundant computation
Large reduction in number of halo exchanges required

C288 running on 96 nodes "0" thread is 36 MPI ranks per node
3/12, 6/6 and 9/4 (Dual socket
Profile by CrayPAT
Pure computation
OMP is faster as it has less work

More threads \rightarrow fewer MPI ranks send/receive bigger messages Import to tune Rendevous/Eager protocol limit (larger)

Intel 17 compiler
This seems very large to me Can't compiler F2K3 OO objects with Cray or PGI Single kernel results suggest
Cray is better
OMP_WAIT_POLICY=active

Fortran - high level language
Abstraction the numerical mathematics
Implementatifirand architecture is hidden
Code - text which conforms to the semantics and syntax of the language definition
Compiler transforms code into
!Internal variables
integer
!loop over layers: Start from 1 as in this loop k is not an offset do $k=1$, nlayers
$i k=k+($ cell-1)*nlayers
! indirect the chi coord field here
do $\mathrm{df}=1$, ndf_chi

end do

call coordinate_jacobian(ndf_chi, nqp_h, nqp_v, chi1_e, chi2_e, chi3_e, \&

Abstraction is broken by parallel/performance/memory features exposed Hacked back together with
MPI, OMP, Open ACC, OpenCL, CUDA, PGAS, SIMD, compiler directives Libraries, languages (exts), directives and compiler (specific) directives
§Metoffre Programming Model II University of

Metoffice Separation of Concerns

Reading

> Scientific programming
> Find numerical solution (and estimate of the uncertainty) to a (set of) mathematical equations which describe the action of a physical system

Parallel programming and optimisation are the methods by which large problems can be solved faster than real-time.

SEPARATION OF CONCERNS Don't let your plumbing code pollute your software.

\approx Met Office
 Layered architecture

Reading

- PSyKAI

of operations on global fields Kernel layer - low level Explicit operation on a single column of data
Code has to follow set of rules (PSyKAI API is DSL)
Parallelisation System Horizontal looping and parallel code.
Can generate parallel code according to rules

Metoffice Algorithm Layer

```
call invoke(
        held_suarez kernel_type(
        rhs_heldsuarez (igh_u),
        rhs_heldsuarez (igh_t),
        state_n(igh_u),
        state_n(igh_t),
        state_n(igh_d),
        chi, qr) ,
    enforce_bc_kernel_type(
        rhs_heldsuarez (igh_u) )
    )
```\&
invoke() Do this in parallel
kernels single column operations fields data parallel global fields

Multiple kernels in single invoke \(\rightarrow\) scope of ordering/parallel communication, etc

\section*{Met Office \\ Kernel Metadata}

\author{
Embed metadata as (compilable) \\ Fortran, but it doesn't get executed Data Access descriptors Explicitly describe kernel arguments Richer information than Fortran itself
}
```

!> The type declaration for the kernel. Contains the metadata needed by the Psy layer
type, public, extends(kernel_type) :: exner_gradient_kernel_type
private
type (arg_type) :: meta_args (3) = (/
\&
arg_type (GH_FIELD, GH_INC, W2),
arg_type (GH_FIELD, GH_READ, W3),
arg_type (GH_FIELD, GH_READ, ANY_SPACE_9)
/)
type (func_type) :: meta_funcs (3) = (/
func_type (W2, GH_BASIS, GH_DIFF_BASIS),
func_type (W3, GH_BASIS),
func_type (ANY_SPACE_9, GH_BASIS, GH_DIFF_BASIS)
/)
integer :: iterates over = CELLS
integer :: gh_shape = GH_QUADRATURE_XYoZ
! gh_shape replaces evaluator_shape
integer :: evaluator_shape = \
contains
procedure, nopass ::exner_gradient_code
end type

```

\section*{Metoffice PSyclone}

Python code generator
Parser, transformations, generation
Controls parallel code (MPI/OpenMP and OpenACC)
Potentially other programming models
e.g. OpenCL for FPGA

What is PSyclone (Brikipedia)?

Developed at STFC Hartree R. Ford, A. Porter, S. Siso
J. Henrichs, BoM

I Kavcic, M Hambley, CMM (MO)
Works with PSyKAI API

\section*{Met Office}

PSyclone \(\rightleftharpoons\)

\section*{Met Office}

\section*{Single kernel invoke}
```

Transforming invoke 'invoke_26_rtheta_kernel_type' ...
Schedule[invoke='invoke_26_r.rheta_kernel_type' dm=False]
Loop[type='',field_space='w0',it_space='cells', upper_bound='ncells']
KernCall rtheta_code(rtheta,theta,wind) [module_inline=False]

```

\section*{Apply distributed memory}
```

Transforming invoke 'invoke_26_rtheta_kernel_type' ...
Schedule[invoke='invoke_26_rtheta_kernel_type' dm=True]
HaloExchange[field='rtheta', type='region', depth=1, check_dirty=True]
HaloExchange[field='theta', type='region', depth=1, check_dirty=True]
HaloExchange[field='wind', type='region', depth=1, check_dirty=True]
Loop[type='',field_space='w0',it_space='cells', upper_bound='cell_halo(l)']
KernCall rtheta_code(rtheta,theta,wind) [module_inline=False]

```

\section*{Simple python script to apply Open MP transformation Can apply on whole model \\ Or as fine-grained as single file}
```

from psyclone.transformations import Dynamo0p3ColourTrans, \ Dynamo0p30MPLoopTrans, \} OMPParallelTrans

```
```

def trans(psy):
ctrans = Dynamo0p3ColourTrans()
otrans = Dynamo0p30MPLoopTrans()
oregtrans = OMPParallelTrans()

# Loop over all of the Invokes in the PSy object

for invoke in psy.invokes.invoke_list:
print "Transforming invoke '{0}' ...".format(invoke.name)
schedule = invoke.schedule
\# Colour loops unless they are on W3 or over dofs
for loop in schedule.loops():
if loop.iteration_space == "cells" and loop.field_space != "w3":
schedule, _ = ctrans.apply(loop)
\# Add OpenMP to loops unless they are over colours
for loop in schedule.loops():
if loop.loop_type != "colours":
schedule, _ = oregtrans.apply(loop)
schedule, - = otrans.apply(loop, reprod=True)
\# take a look at what we've done
schedule.view()

```

\section*{Met Office \\ Transformed Schedule}
```

Transforming invoke 'invoke_26_rtheta_kernel_type' ...
Schedule[invoke='invoke_26_rtheta_kernel_type' dm=True]
HaloExchange[field='rtheta', type='region', depth=1, check_dirty=True]
HaloExchange[field='theta', type='region', depth=1, check_dirty=True]
HaloExchange[field='wind', type='region', depth=1, check_dirty=True]
Loop[type='colours',field_space='w0',it_space='cells', upper_bound='ncolours']
Directive[OMP parallel]
Directive[OMP do]
Loop[type='colour',field_space='w0',it_space='cells', upper_bound='ncolour']
KernCall rtheta_code(rtheta,theta,wind) [module_inline=False]

```

\section*{Met Office}

Met office Data layout, unstructured
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathrm{W}_{0}\) space (vertices) \\
\hline
\end{tabular}

Dofmap 2-d array
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 6 & 7 & 11 & 12 & 16 & 17 \\
\hline 6 & 7 & 21 & 22 & 26 & 27 & 11 & 12 \\
\hline\(\cdots\) & \(\cdots\) & ndof per cell & \(\cdots\) & \(\cdots\) & \(\cdots\) \\
\hline
\end{tabular}

Visit same dof more than once: loop over cells, levels, dofs Mesh and dofmap form an ordered set
Change mesh topology (element), geometry (cubed sphere)
\(\rightarrow\) Change to mesh generation and partition
\(\rightarrow\) No change to science code```

