Lossy compression of floating-point data iCAS 2017

Peter Lindstrom

LLNL-PRES-739189

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Numerical data is challenging to compress losslessly

Lossy compression enables greater reduction, but is often met with skepticism by scientists

- Large improvements in compression are possible by allowing even small errors
 - Simulation often computes on meaningless bits
 - Round-off, truncation, iteration, model errors abound
 - Last few floating-point bits are effectively random noise

Still, lossy compression often makes scientists nervous

- Even though lossy data reduction is ubiquitous
 - Decimation in space and/or time (e.g. store every 100 time steps)
 - Averaging (hourly vs. daily vs. monthly averages)
 - Truncation to single precision (e.g. for history files)
 - Moreover, most compressors support error tolerances

LLNL has developed two high-speed floatingpoint compressors

- fpzip: lossless floating-point compressor
 - Lossy compression via truncation to desired precision
 - fpzip loslessly compresses pre-truncated floats
 - Similar to casting double to single precision
 - Truncation enables relative-error bound
 - Streaming compressor integrates well with I/O

Lossy compression may also be used to reduce the memory footprint of simulation state

LULESH: Lagrangian shock hydrodynamics

- Qol: radial shock position
- 25 state variables compressed over 2,100 time steps
- At 4x compression, relative error < 0.06%

pf3D: Laser-plasma multi-physics

- Qol: backscattered laser energy
- At **4x compression**, relative **error < 0.1**%

16 bits/value

Miranda: High-order Eulerian hydrodynamics

- QoI: Rayleigh-Taylor mixing layer thickness 25
- 10,000 time steps
- At **4x compression**, relative **error < 0.2**%

h_{λ_0}

MFEM: Cubic finite elements

uncompressed

• Qol: function approximation

20 bits/value

 6x compression with ZFP error < 0.7% relative to FEM error

4x lossy compression of state is viable, but streaming compression increases data movement

LLNL has developed two high-speed floatingpoint compressors

- fpzip: lossless floating-point compressor
 - Lossy compression via truncation to desired precision
 - fpzip loslessly compresses pre-truncated floats
 - Similar to casting double to single precision
 - Truncation enables relative-error bound
 - Streaming compressor integrates well with I/O

- ZFP: random-accessible compressed arrays
 - Partition *d*-dim. array into blocks of 4^d values
 - Blocks are independently (de)compressed on demand
 - Can truncate compressed bit stream anywhere
 - Variable rate enables absolute-error bound
 - Fixed rate enables read/write random access to blocks
 - C++ operator overloading facilitates app. integration
 - double a[n] ⇔ std::vector<double> a(n) ⇔ zfp::array<double> a(n, precision)

fpzip systematic rounding toward zero leads to occasional issues in climate data analysis

Lawrence Livermore National Laboratory LLNL-PRES-739189

fpzip error distribution is highly biased; ZFP distribution is normal (central value thm.)

□-2 <= f < -1 □0.5 <= f < 1

ZFP and SZ decorrelate error with function (note nonlinear vertical axis)

Some compressors yield autocorrelated errors

Lawrence Livermore National Laboratory LLNL-PRES-739189

Some compressors show artifacts in derivative computations (velocity divergence)

Some compressors show artifacts in derivative computations (velocity divergence)

Some compressors show artifacts in derivative computations (velocity divergence)

ZFP is being used in production in numerous petascale applications

LEOS: Livermore Equation of State library

- EOS material tables consume a large fraction of memory
- ZFP arrays enable random access to compressed tables
- 4x compression ensures thermodynamic consistency

HYDRA: Simulated ICF X-rays

- Trinity runs generated **4 PB** of uncompressed data
- 15 months to transfer to LLNL; 2 months of disk space available
- 10x compression allowed for successful data transfer

AWP-ODC: Full-3D Seismic Tomography

- Adjoint-wavefield competitor uses 200 GB
- Scattering-integral formulation uses 1.8 PB
- 40x compression, 6x less I/O time
- 10⁻⁶ compression error < 10⁻² observation noise

JHTDB: Johns Hopkins Turbulence Database

- Trinity runs use 8K³ grids = 2 TB/field/time step
- Without compression, only selected features saved
- ZFP allows retaining full fields
- Compressed data server being considered

Al 130 thermodynamic consistency (4x compression)

Al 130 thermodynamic consistency (no com

With P. Sterne @ LLNL

With R. Burns @ JHU

ZFP reduces I/O by 30x on average in CM1 tornado simulation [work done by Leigh Orf, UW-Madison]

fpzip and ZFP are publicly available

- fpzip: casc.llnl.gov/fpzip
- ZFP: github.com/LLNL/zfp
 - BSD licensed open source
 - Development is funded by $\equiv (\Box) \supseteq$
- Several ZFP I/O plugins are available
 - netCDF is in the works

ADIOS github.com/suchyta1/AtoZ

Lawrence Livermore National Laboratory LLNL-PRES-739189

References

[fpzip] Lindstrom & Isenburg, "Fast and efficient compression of floating-point data," 2006

[HVQ] Schneider & Westermann, "Compression domain volume rendering," 2003

[ISABELA] Lakshminarasimhan et al., "ISABELA for effective in situ compression of scientific data," 2013

[LZ4A, LZ4P] Kunkel et al., "Decoupling the selection of compression algorithms from quality constraints with SCIL," 2017

[SQ] Iverson et al., "Fast and effective lossy compression algorithms for scientific datasets," 2012

[SZ] Di & Cappello, "Fast error-bounded lossy HPC data compression with SZ," 2016

[Tucker] Ballester & Pajarola, "Lossy volume compression using Tucker truncation and thresholding," 2016

[VAPOR] Clyne et al., "Interactive desktop analysis of high resolution simulations," 2007

[ZFP] Lindstrom, "Fixed-rate compressed floating-point arrays," 2014

Additional material

fpzip: Lossless mode combines multidimensional prediction with entropy coding

Lawrence Livermore National Laboratory

fpzip: Lossy mode truncates (zeros) least significant bits, then compresses losslessly

fpzip error distribution is dependent on function value *f* and is highly biased

ZFP: Compressed floating-point arrays that support random access on demand

ZFP decorrelates *d*-dimensional block of 4^{*d*} values using an orthogonal transform

ZFP's integer transform is efficient, effective, and well-suited for h/w implementation

ZFP limits data loss via a small write-back cache

Compress only "dirty" blocks when evicted from the cache

ZFP error distribution is normal due to linear transform of iid. errors (central limit theorem)

ZFP consistently achieves high quality across a diverse collection of scientific data sets

Lawrence Livermore National Laboratory LLNL-PRES-739189

ZFP is among the fastest compressors available

ZFP *improves* accuracy in finite difference computations using less precision than IEEE

Shock wave propagation using 16-bit ZFP arrays agrees well with double-precision solution

