Accelerating Earth and climate modeling with machine learning

Kelly Kochanski NCAR Multicore Workshop 2019

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

2014 xkcd.com/1425/

October 31, 2018 • Uncategorize

Following Fast.ai Deep Learning Part 1 V3 – Week 1 experimenting thoughts

Posted by redditech

I am part of the Fast.ai Deep Learning for Coders Part 1 v3 MOOC whose classes are currently ongoing weekly.

After lesson 1, I looked at the Datasets built into Fast.ai now, and decided to learn by experimenting with the bird species dataset and attempting to change Lesson 1's notebook to work with it, since it was a similar image classification exercise.

What is machine learning?

What is machine learning?

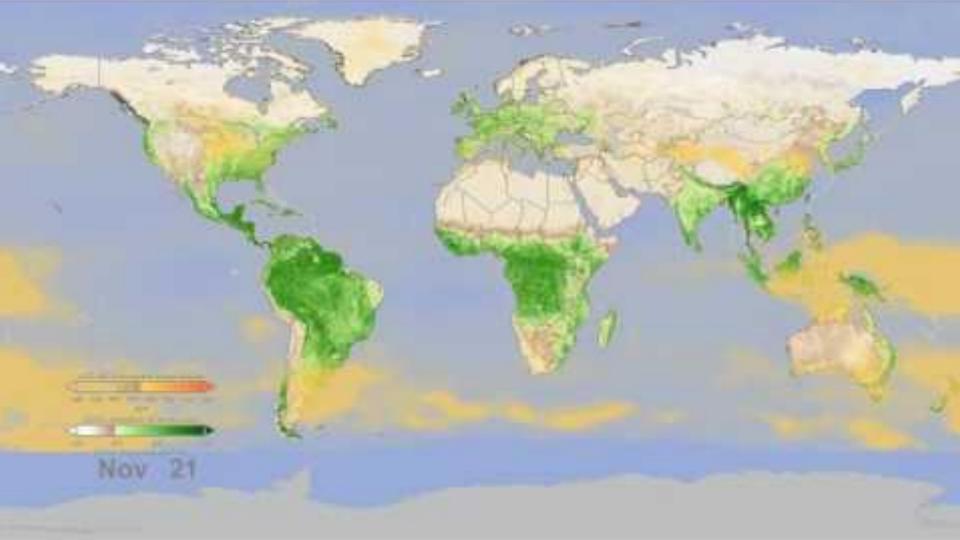
Machine learning at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world.

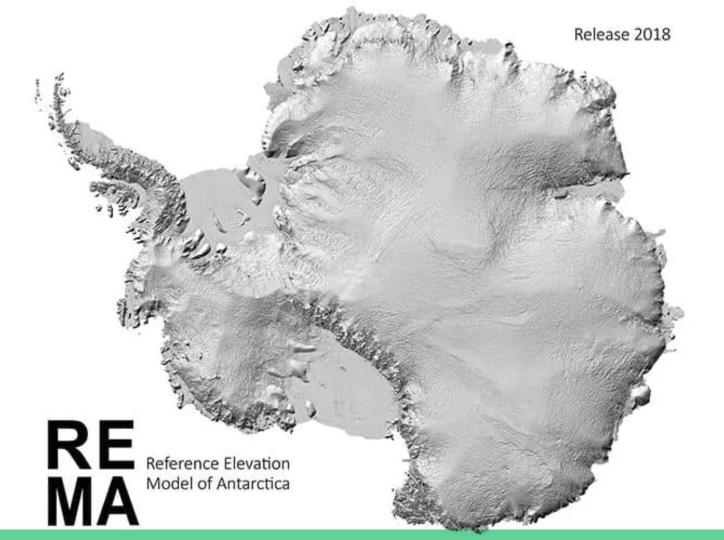
Michael Copeland 2016

Why is machine learning relevant to Earth System Modeling now?

Current trends 1/3

Machine learning offers solutions to once-intractable problems

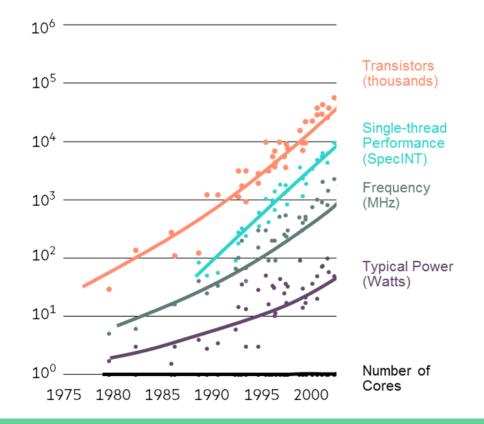




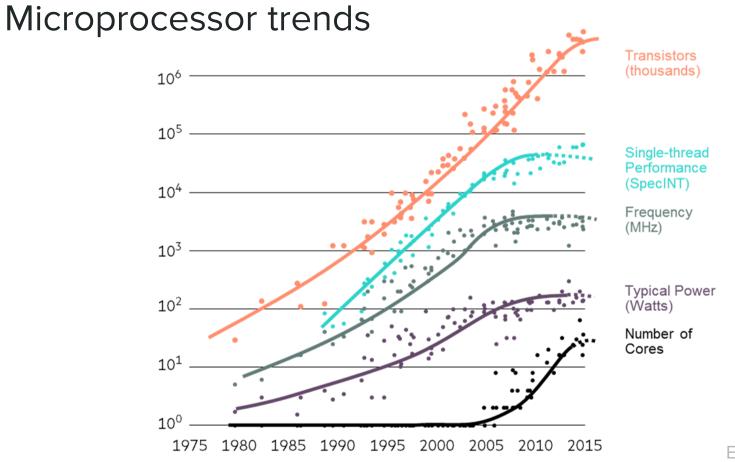
Model for Prediction Across Scales (2015), Los Alamos National Laboratory Current trends 2/3

New data streams increase the potential power of data-driven models

Microprocessor trends



Karl Rupp, World Economic Forum, 2018



Karl Rupp, World Economic Forum, 2018

9,216 Power9 22-core CPUs

IBM

nmm

27,648 NVIDIA Tesla V100 GPUs

NVIDIA TESLA V100 TENSOR CORE GPU

The Most Advanced Data Center GPU Ever Built

WELCOME TO THE ERA OF AI.

Finding the insights hidden in oceans of data can transform entire industries, from personalized cancer therapy to helping virtual personal assistants converse naturally and predicting the next big hurricane.

Google TensorFlow Processing Units

IBM TrueNorth Chips

Current trends 3/3

Machine learning is driving innovation in HPC

My perspective: Climate change impacts ML in service of earth science

PLOTHATCHER PRO

01/28/2016 15110150 75/ 100 0

Tackling Climate Change with Machine Learning

David Rolnick^{1*}, Priya L. Donti², Lynn H. Kaack³, Kelly Kochanski⁴, Alexandre Lacoste⁵, Kris Sankaran^{6,7}, Andrew Slavin Ross⁸, Nikola Milojevic-Dupont^{9,10}, Natasha Jaques¹¹, Anna Waldman-Brown¹¹, Alexandra Luccioni^{6,7}, Tegan Maharaj^{6,7}, Evan D. Sherwin², S. Karthik Mukkavilli^{6,7}, Konrad P. Kording¹, Carla Gomes¹², Andrew Y. Ng¹³, Demis Hassabis¹⁴, John C. Platt¹⁵, Felix Creutzig^{9,10}, Jennifer Chayes¹⁶, Yoshua Bengio^{6,7}

¹University of Pennsylvania, ²Carnegie Mellon University, ³ETH Zürich, ⁴University of Colorado Boulder, ⁵Element AI, ⁶Mila, ⁷Université de Montréal, ⁸Harvard University,

⁹Mercator Research Institute on Global Commons and Climate Change, ¹⁰Technische Universität Berlin,

¹¹Massachusetts Institute of Technology, ¹²Cornell University, ¹³Stanford University,

¹⁴DeepMind, ¹⁵Google AI, ¹⁶Microsoft Research

climatechange.ai

How can we use machine learning to build better Earth System Models?

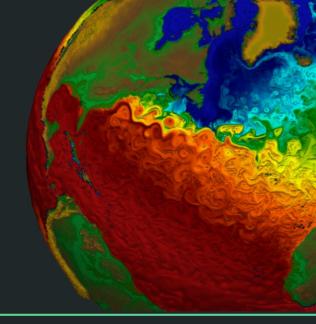
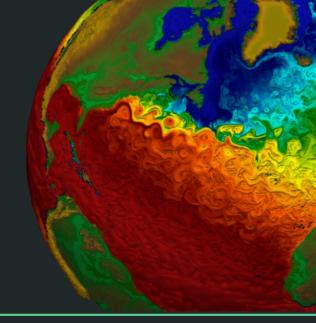


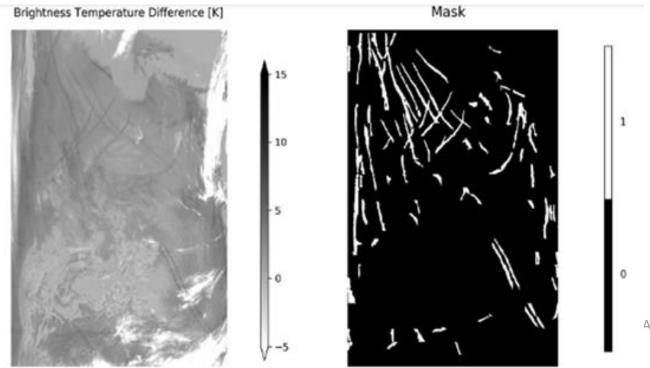
Image: MPAS-Ocean Los Alamos National Lab How can we use machine learning to build better Earth System Models?



Aims:

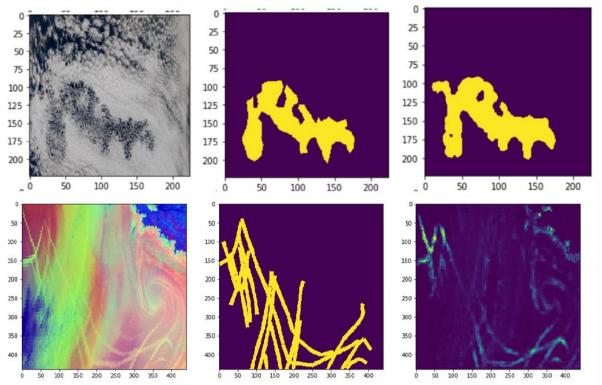
- To solve long-standing problems with new methods
- To integrate new sources of data into existing models
- To take advantage of new computing hardware

Monitoring marine clouds

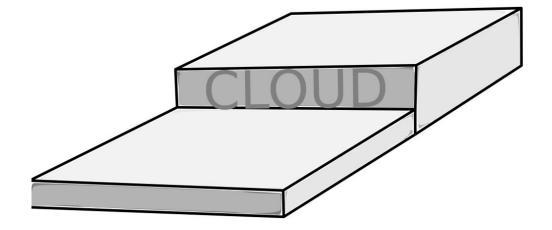


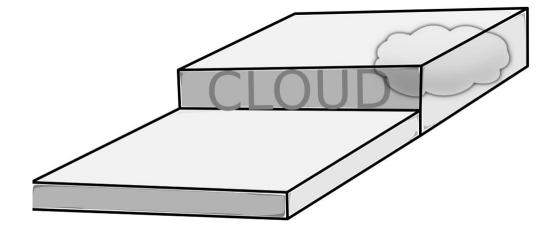
Yuan, Tianle, et al. "Automatically Finding Ship-tracks to Enable Large-scale Analysis of Aerosol-Cloud Interactions." *Geophysical Research Letters* (2019).

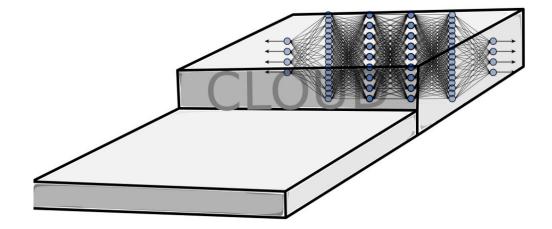
Monitoring marine clouds



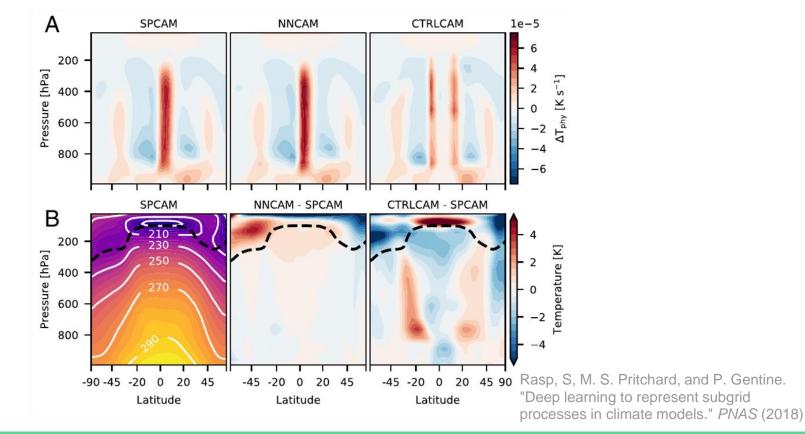
Watson-Parris, Duncan, et al. "Detecting anthropogenic cloud perturbations with deep learning." International Conference on Machine Learning, 2019.



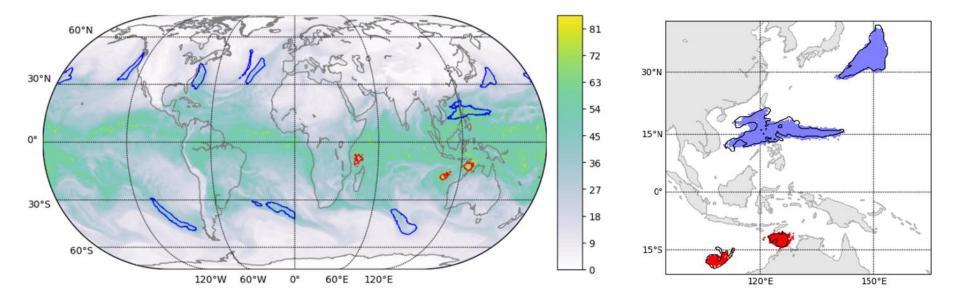




Gentine, Pierre, et al. "Could machine learning break the convection parameterization deadlock?." *Geophysical Research Letters* 45.11 (2018): 5742-5751.



Tracking extreme events



Kurth, Thorsten, et al. "Exascale deep learning for climate analytics." *Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis.* IEEE Press, 2018.

Deep learning for spatio-temporal patterns

Input frames

Ground truth

.

 ℓ_2 result

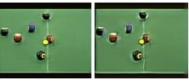
 ℓ_1 result

 ℓ_1 result

GDL ℓ_1 result

Adversarial result

Ground truth



Adversarial result

Adversarial+GDL result

 ℓ_2 result

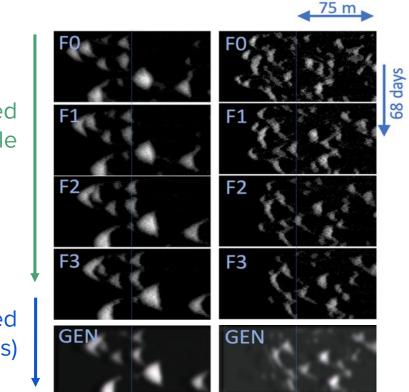
Adversarial+GDL result

Mathieu, Michael, Camille Couprie, and Yann LeCun. "Deep multi-scale video prediction beyond mean square error." (2016)

Deep learning for spatio-temporal patterns

Reedster, Mogle and Bogel, 'Monitoring and analysis of sand dune movement and growth on the Navajo Nation, Southwestern United States' (2011) USGS Fact Sheet 3085.

Deep learning for spatio-temporal patterns



Simulated example

Generated frame(s)

Barriers to implementation

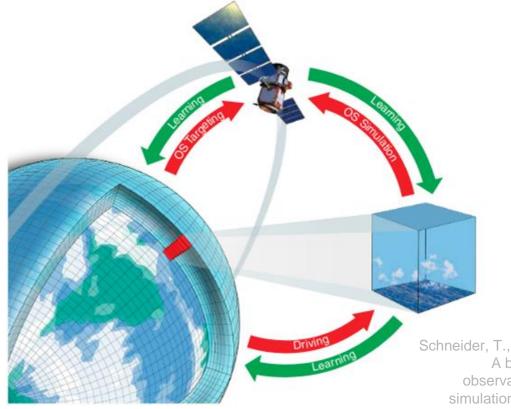
Barriers to implementation

Machine learning Climate science

What's exciting?	Big data!	Science!
Objectives	Well-defined is useful.	Broad is interesting.
Explainability	Second to prediction	Often the main goal
Data	Ideally clean and labelled	Many unlabeled features
Data formats	Images, csv, dataframes	Images, netcdf, misc
Data use	Integral to model	Data -> theory -> model
Existing code	Python, R, Julia	C/C++, Fortran
Publications	At conferences	In journals

Removing barriers

Building climate models that are ready to learn



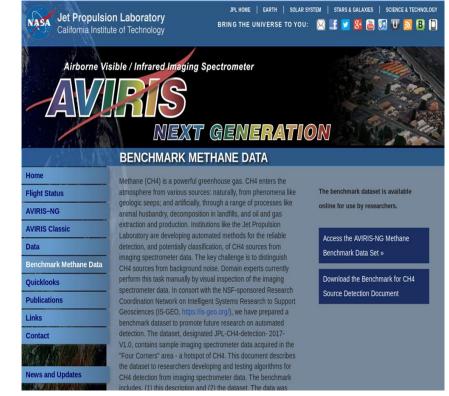
Schneider, T., et al. "Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations." *Geophysical Research Letters*

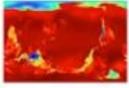
Barriers to implementation

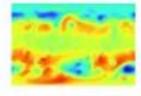
Machine learning Climate science

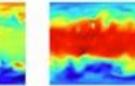
What's exciting?	Big data!	Science!
Objectives	Well-defined is useful.	Broad is interesting.
Explainability	Second to prediction	Often the main goal
Data	Ideally clean and labelled	Many unlabeled features
Data formats	Images, csv, dataframes	Images, netcdf, misc
Data use	Integral to model	Data -> theory -> model
Existing code	Python, R, Julia	C/C++, Fortran
Publications	At conferences	In journals

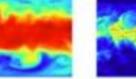
Creating benchmark datasets

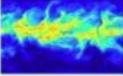


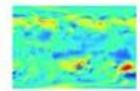


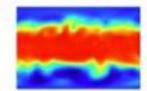












is-geo.org/benchmarks: JPL-CH4-detection-2017-V1.0

extremeweatherdataset.github.io

Barriers to implementation

Machine learning Climate science

What's exciting?	Big data!	Science!
Objectives	Well-defined is useful.	Broad is interesting.
Explainability	Second to prediction	Often the main goal
Data	Ideally clean and labelled	Many unlabeled features
Data formats	Images, csv, dataframes	Images, netcdf, misc
Data use	Integral to model	Data -> theory -> model
Existing code	Python, R, Julia	C/C++, Fortran
Publications	At conferences	In journals

Running machine-learning oriented workshops

NeurIPS 2019 Workshop December 13/14 in Vancouver, Canada

TACKLING CLIMATE CHANGE WITH MACHINE LEARNING

Submission deadline: September 11 Details at www.climatechange.ai

Organizers:

David Rolnick, Alexandre Lacoste, Tegan Maharaj, Priya Donti, Lynn Kaack, John Platt, Jennifer Chayes, Yoshua Bengio

Barriers to implementation

Machine learning Climate science

What's exciting?	Big data!	Science!
Objectives	Well-defined is useful.	Broad is interesting.
Explainability	Second to prediction	Often the main goal
Data	Ideally clean and labelled	Many unlabeled features
Data formats	Images, csv, dataframes	Images, netcdf, misc
Data use	Integral to model	Data -> theory -> model
Existing code	Python, R, Julia	C/C++, Fortran
Publications	At conferences	In journals

Next steps

Learn more about machine learning

Online courses

coursera.org/learn/machine-learning

Informational blogs

towardsdatascience.com

Python tutorials

Scikit-learn: <u>bit.ly/sklstrata</u>, fastai: <u>course.fast.ai</u>

Learn more about machine learning for Earth, weather, and climate science

- McGovern, Amy, et al. Bulletin of the American Meteorological Society 98.10 (2017): 2073-2090.
 Using artificial intelligence to improve real-time decision-making for high-impact weather.
- Reichstein, Markus, et al. *Nature* 566.7743 (2019): 195.
 Deep learning and process understanding for data-driven Earth system science.
- Karpatne, Anuj, et al. *IEEE Transactions on Knowledge and Data Engineering* (2018). Machine learning for the **geosciences**: Challenges and opportunities.
- Gil, Y., Pierce, S. A., ... & Horel, J. (2018). *Communications of the ACM*, *6*2(1), 76-84. Intelligent systems for **geosciences**: an essential research agenda.
- Rolnick, D., Donti, P., Kaack, L., Kochanski, K., et al. arXiv preprint arXiv:1906.05433 (2019).
 Tackling climate change with machine learning

Climate Change Al climatechange.ai

Climate Change Al climatechange.ai

Climate Informatics climateinformatics.org

Climate Change Al climatechange.ai

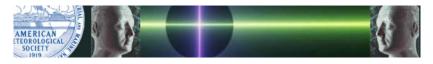
Intelligent Systems and Geosciences is-geo.org

Climate Informatics climateinformatics.org

Climate Change Al climatechange.ai

Intelligent Systems and Geosciences is-geo.org

Climate Informatics climateinformatics.org



AMS Committee on Al for Env. Science

Thanks

Greg Tucker, David Rolnick, Ghaleb Abdulla, Divya Mohan, Jenna Horrall, Priya Donti, Surya Karthik Mukkavilli, Barry Rountree, Goodwin Gibbons

Questions?