## Balancing Model Resolution and Ensemble Size

Jim Kinter, COLA

International Computing for the Atmospheric Sciences Symposium Annecy, France 13 September 2017





# Much Progress in Atmospheric Modeling of Past 3.5\* Decades Associated with HPC Advances

- Observing system advances in instruments, communications and processing (system of systems)
- Data assimilation advances in theory, algorithms, HPC
- Representation of physics
  - Including more processes requires more HPC
  - Using obs to develop better parameterizations
- Higher resolution enabled by HPC (Moore's Law, S/W engineering, etc.)

\* About half the time since modern era of numerical simulation of atmosphere (1947) and when I started coding and running climate models on Cyber 205



# Why Increase Spatial Resolution?

- We expect numerical solutions of fluid dynamics to converge to the continuous solution as we refine the grid
  - Numerical solutions of continuous PDEs improve as we reduce/eliminate approximations inherent in discretizing/filtering
- How much refinement is "enough"?
  - It is not practical, and likely not scientific (due to Brownian motion), to attempt to track every molecule or even every kmol (~10<sup>26</sup> molecules), of substance in the Earth system
  - On the other hand, a model that tracks only features at 10<sup>2</sup>-10<sup>3</sup> km-scale is clearly inadequate
  - Where in that range of 6 orders of magnitude do we need to be?
- What are the "breakpoints" or thresholds in resolution between these extremes, and are there indications that we make gains by reaching those breakpoints?





# **Possible Breakpoints**

- Baroclinic eddies in the atmosphere
  − O(1000) km scale → 150-km grid spacing\*
- Ocean eddies

 $- O(1^{\circ})$  scale  $\rightarrow 0.1^{\circ}$  grid

- Mesoscale eddies & tropical cyclones
  - O(100) km scale  $\rightarrow$  15 km grid spacing
  - O(10) km for internal structure  $\rightarrow$  1.5 km grid
- Tornadoes & convective cells
  - O(1) km scale  $\rightarrow$  150 m grid spacing

\* Assume 6-10 grid points to resolve feature or wave



## High-Resolution, High-Volume Projects at COLA in collaboration with ECMWF, JAMSTEC, U. Tokyo, Oxford...

- Project Athena (2009-2012; still publishing results!): global atmosphere-only simulations with resolutions: 120-km ←→ 7-km
  - Dedicated XT4 at NICS; 72 million core hours ... Presented at iCAS2013
- Project Minerva (2012-2014): global *coupled* seasonal predictions with different atmosphere and land surface spatial resolutions:
  51 member ensembles, 64-km ←→ 16-km, 1 degree ocean
  - Dedicated ASD on NCAR Yellowstone; 41 million core hours
- Project Metis (2016-present): global *coupled* seasonal predictions with different A, O and L spatial resolutions: 58-km ← → 9-km, 1 degree ← → 0.25 degree ocean
  - Dedicated ASD on NCAR Cheyenne; 81 million core hours

The Goddess Trilogy – Paul Dirmeyer





# It Takes a Village ...

- Two common themes of the Athena, Minerva and Metis projects
  - Use of several generations of the ECMWF model
  - The contributions of many people for model runs, data management and analysis
- COLA contributors
  - Ben Cash (lead), Jennifer Adams, Eric Altshuler, P. Dirmeyer, B.
    Doty, V. Krishnamurthy, Julia Manganello, David Straus
- ECMWF contributors
  - Roberto Buizza, Franco Molteni, Damien Decremer, Sami Saarinen
  - From earlier projects: Martin Miller, Tim Palmer, Peter Towers, Nils Wedi





## **Minerva Overview**

| System  | Atmosphere moc<br>cycle | lel Atmosphere<br>spectral truncation | Atmosphere vertical<br>levels | Ocean model    | Ocean horizontal<br>res, equatorial<br>refinement | Ocean vertical<br>levels |
|---------|-------------------------|---------------------------------------|-------------------------------|----------------|---------------------------------------------------|--------------------------|
|         |                         | T319 (64km)                           |                               | NEMO v 3.0/3.1 | 1 degree,<br>~ 0.3 deg. Lat                       | 42 levels                |
| MINERVA | IFS cy 38r1             | T639 (32 km)                          | 91 levels,<br>top = 1 Pa      |                |                                                   |                          |
|         |                         | T1279 (16 km)                         |                               |                | C .                                               |                          |
|         | Resolution              | Start Dates                           | Ensembles                     | Length         | Period of<br>Integration                          |                          |
|         | T319                    | May 1, Nov 1                          | 51                            | 7 months       | 1980-2013                                         |                          |
|         |                         | Nov 1                                 | 15                            | 24 months      | 1980-2013                                         |                          |
|         |                         | May 1, Nov 1                          | 15                            | 7 months       | 1980-2013                                         |                          |
|         | T639                    | May 1, Nov 1                          | 36                            | 5 (4) months   | 1980-2013                                         |                          |
|         |                         | Nov 1                                 | 15                            | 24 months      | 1980-2013                                         |                          |
|         | T1279                   | May 1, Nov 1                          | 15                            | 7 months       | 1980-2013                                         |                          |



## **Project Metis**

| At<br>System mo      |    | osphere<br>el cycle            | Atmospher<br>spectral<br>truncation          | e<br>Atmosphere<br>vertical levels   | Oce  | ean model       | Ocean hori<br>res.                           | izontal   | Ocean<br>vertical levels               |
|----------------------|----|--------------------------------|----------------------------------------------|--------------------------------------|------|-----------------|----------------------------------------------|-----------|----------------------------------------|
| METIS                | IF | S cy 43r1                      | Tco199 (64kr<br>Tco639 (16kr<br>Tco1279 (9kr | n) 91 levels,<br>n) top = 1 Pa<br>n) | r    | NEMO v<br>3.4.1 | Tco199: 1º<br>Tco639: 0.25º<br>Tco1279: 0.25 | 2<br>50   | Tco199:42<br>Tco639: 75<br>Tco1279: 75 |
| Resolution           | 1  | Start [<br>(1 <sup>st</sup> of | Dates<br>month)                              | Ensembles                            |      | Lengt           | h                                            | Perio     | od of<br>gration                       |
| T <sub>co</sub> 319  | 19 | May, Nov                       |                                              | 25                                   |      | 6 months        |                                              | 1986-2015 |                                        |
|                      |    | Jun, J<br>Dec, .               | ul, Aug,<br>Jan, Feb                         | 15                                   |      | 2 mor           | nths                                         | 1986      | 5-2015                                 |
| T <sub>co</sub> 639  |    | Ma                             | y, Nov                                       | 25                                   |      | 6 mor           | nths                                         | 1986      | 5-2015                                 |
|                      | 9  | Jun, J<br>Dec, .               | ul, Aug,<br>Jan, Feb                         | 15                                   |      | 2 mor           | nths                                         | 1986      | 5-2015                                 |
| T <sub>co</sub> 1279 | )  | Nov                            |                                              | 15                                   |      | 2 months        |                                              | 1986      | 5-2015                                 |
| ~                    | 80 | millior                        | n Cheyeni                                    | ne hours, 85                         | 50 1 | ГВ ana          | lyzable o                                    | utpu      | t                                      |



8



# Selected Research Highlights from High Resolution Climate Models

## Unexpected Challenges:

- ENSO
- Indian Summer Monsoon

## Interesting Successes:

- Tropical Cyclones
- California Drought





## **ENSO Forecast Skill in Minerva**

(simultaneous correlation predicting March SSTA from 1 Nov ICs ensemble mean)



### Almost no sensitivity to resolution or ensemble size



8



# Mean Monsoon (JJAS) Rainfall Bias in Minerva

T319









# Mean Monsoon (JJAS) Rainfall Bias in Minerva



### Almost no sensitivity to resolution





# **Tropical Cyclones**





## I. Sensitivity of *Simulated* Tropical Cyclone Structure to Atmospheric Horizontal Resolution





# **Sensitivity to Resolution: Tropical Cyclones**

OBS

16 km

64 km





ICAS2017 – Jim Kinter

## II. Sensitivity of *Hindcast* Skill to Atmospheric Horizontal Resolution and Ensemble Size





## **Seasonal Statistics of Tropical Cyclones in Minerva**





III. *Metis* skill at Base Resolution (T<sub>co</sub>199: 50-km atmosphere, 1<sup>o</sup> ocean) Higher than *Minerva* at Any Resolution





#### Correlation Skill of North Atlantic TC frequency and ACE in Minerva and Metis Tco199



| Model/Basin              | NA   | ENP  | WNP  |  |  |  |  |
|--------------------------|------|------|------|--|--|--|--|
| TC Frequency (1986-2011) |      |      |      |  |  |  |  |
| Metis Tco199             | 0.72 | 0.62 | 0.64 |  |  |  |  |
| Minerva T1279            | 0.69 | 0.52 | 0.60 |  |  |  |  |
| Minerva T639             | 0.68 | 0.50 | 0.44 |  |  |  |  |
| Minerva T319             | 0.27 | 0.55 | 0.55 |  |  |  |  |
| TC Frequency (1990-2015) |      |      |      |  |  |  |  |
| Metis Tco199             | 0.71 | 0.71 | 0.58 |  |  |  |  |
| ACE (1990-2015)          |      |      |      |  |  |  |  |
| Metis Tco199             | 0.60 | 0.75 | 0.81 |  |  |  |  |

Boldface indicates stat. significance at the 95% confidence level

**Courtesy Julia Manganello** 





### **Rank Correlation Skill of Regional TC Activity in Metis T<sub>co</sub>199 and T<sub>co</sub>639**









**Courtesy Julia Manganello** 





## IV. Ensemble Forecasts With High-Atmospheric Resolution Coupled Prediction Systems: "Extensions" of Observational Record to Compile Statistics of Rare and Potentially Highly Destructive Events





# Mid-Atlantic Landfall Example: Hurricane Sandy





# Hurricane Irma – GFS Forecast from Sunday, 3 September 2017







### **TC Landfalls in Mid-Atlantic – Among Least Frequent in US**



**OBS (1980-2016): 6 landfalls** (TS Dean'83, MH Bertha'96, MH Floyd'99, SS #22'05, MH Irene'11, MH Sandy'12)



ICAS2017 – Jim Kinter



## Mid-Atlantic TC Landfall Basic Statistics in OBS and Minerva

|                                                         | IBTrACS v03r07           |                          | <b>TI279</b>                       | <b>T639</b>                         | <b>T319</b><br>(1980-2012) |                          |
|---------------------------------------------------------|--------------------------|--------------------------|------------------------------------|-------------------------------------|----------------------------|--------------------------|
|                                                         | 1851-2016<br>(166 seas.) | 1900-2016<br>(117 seas.) | (1980-2013;15 ens.)<br>(510 seas.) | (1980-2013; 15 ens.)<br>(510 seas.) | 15 ens.<br>(495 seas.)     | 51 ens.<br>(1,683 seas.) |
| Average rate <sup>1</sup>                               | 0.13                     | 0.11                     | 0.10                               | 0.09                                | 0.09                       | 0.09                     |
| Average Return<br>Period <sup>2</sup>                   | 8                        | 9                        | 10                                 | 11                                  | 11                         | 11                       |
| Probability of<br>Landfall <sup>3,4</sup>               | 12%                      | 11%                      | 9%                                 | 9%                                  | 9%                         | 9%                       |
| Probability of<br>landfall in the<br>next 10<br>seasons | 74%                      | 69%                      | 64%                                | 61%                                 | 63%                        | 61%                      |

<sup>1</sup> per MJJASON season

<sup>2</sup> in seasons (MJJASON)

<sup>3</sup> in a MJJASON season

<sup>4</sup> Probability of a landfall of 1 or more TCs based on the Poisson distribution. Differences between the model and observational values are statistically <u>insignificant</u> (at 95% confidence limit).

**Courtesy Julia Manganello** 





## **Formation Regions of TCs with Mid-Atlantic Landfalls**







**Courtesy Julia Manganello** 

## Intensity Distribution (10m wind speed)















ICAS2017 – Jim Kinter



# **California Drought**

- California experienced severe drought from 2011 2017
  - Mostly alleviated by record precipitation in winter 2016/17
- Multiple years of below-average rainfall
  - Large deficiencies during winter rainy season
- Widespread hope/expectation that massive 2015/16 El Niño event would break the drought
  - Previous large El Niño events associated with above average winter rains
  - Seasonal forecasts suggested this would be true again
  - Slightly below normal rainfall resulted
  - WHY DIDN'T THE DOG BARK?





<u>1997/98 SOCAL</u> precipitation in <u>the NMME</u>

Anomalies relative to 1982-2009 hindcasts

Above average rainfall observed, particularly in February

> Ensemble mean predicts above average rainfall



**Courtesy Ben Cash** 





2015/16 SOCAL precipitation in the NMME

Anomalies relative to 1982-2009 hindcasts

Observed Feb. rainfall below average

Ensemble mean is still above average

CMAP **October 1 initial conditions** CMC1-CanCM3 7.5 CMC2-CanCM4 COLA-RSMAS-CCSM3 7 COLA-RSMAS-CCSM4 GFDL-CM2p1-aer04 6.5 GFDL-CM2p5-FLOR-A06 GFDL-CM2p5-FLOR-B01 6 NASA-GMAO-062012 NCEP-CFSv2 MMEM 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 SĖP OCT NÓV DÉC JÁN FÉB MAR APR MAY AUG

2016

**Courtesy Ben Cash** 





2015

Forecasts of SOCAL Precipitation Anomalies, Initialized October 2015



## SOCAL Rainfall in Project Metis

- Clear reduction in ensemble mean forecast from 1997/98 to 2015/16
- Much larger ensemble spread



Benjamin Cash – NOAA Review: Year 3 - June 29, 2017







**Courtesy Ben Cash** 

ICAS2017 – Jim Kinter

### SOCAL Rainfall in Project Metis

- Clear reduction in ensemble mean forecast from 1997/98 to 2015/16
- Much larger ensemble spread



Benjamin Cash – NOAA Review: Year 3 - June 29, 2017







ICAS2017 – Jim Kinter

### Simulated and Observed SST Differences: 2015/16 – 1997/1998

 Metis clearly captures differences in eastern tropical Pacific between the two events



120E

METIS Tco639 2015-1997 NDJFM SST

60E

180

120W

6ÓW

Model





### <u>Simulated MSLP Differences:</u> 2015/16 – 1997/1998

- Large forced difference in north Pacific circulation
- Region known to affect SOCAL rainfall
- Clear difference in forced response
- Large unforced component as well (not shown)





Benjamin Cash - NOAA Review: Year 3 - June 29, 2017

**Courtesy Ben Cash** 



ICAS2017 – Jim Kinter



# Conclusions

#### • ENSO and Asian Monsoon

- Forecast skill relatively insensitive to resolution in Minerva
- Clear reduction in SST bias with resolution in Metis analysis ongoing

#### • Tropical Cyclones

- Significant improvements in structure, ACE with resolution
- Model improvements can lead to better results along with increased resolution
- Interannual variability of TC frequency still not fully reproducible but improving

#### Project Metis

- Clear difference in ensemble mean between 1997/98 and 2015/16 events
  - Large difference in eastern Pacific SST
  - Large difference in north Pacific circulation
- Clear difference in wet and dry members for 2015/16 event (not shown)
  - Large difference in north Pacific atmospheric circulation, despite relatively minor difference in SST
  - General lack of wet events in dry members
- Conclusion: Significant forced and unforced differences in north Pacific led to reduced 2015/16 SOCAL rainfall





# **Implications for Prediction**

- Model improvement and increased spatial resolution both can improve skill for forced signal
- Large ensembles needed to assess unforced variance
  - Note: Higher resolution models may demand larger ensembles simply because both signal and noise increase with resolution
- Need to acknowledge unexplained variance in observations



