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COLA News

COLA Moves to GMU Fairfax Campus

We are pleased to announce that the Center for Ocean-Land-Atmosphere
Studies (COLA) will become an integral part of George Mason University
(GMU) in 2013-14. COLA staff and the COLA computing facility will be
collocated with Climate Dynamics faculty and students and the AOES
Department on the GMU main campus in Fairfax, Virginia.

I |:q. T :.- .

James L. Kinter III,
Director, COLA

Barry A. Klinger,
Graduate coordinator, AOES
Jagadish Shukla,

Director, Climate Dynamics Program

David M. Straus,
Chair, AOES
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T. DelSole; Ph.D., Harvard Univ.
P. Dirmeyer; Ph.D., Univ. of Maryland
E. Jin; Ph.D., Seoul National Univ.
B. Huang; Ph.D., Univ. of Maryland
V. Krishnamurthy; Ph.D., M.I.T.
J. Lu; Ph.D., Dalhousie Univ.

J. Kinter; Ph.D., Princeton Univ.

Atmospheric, Oceanic,
and Earth Sciences

B. Klinger; Ph.D., M.1.T./Woods Hole Ocean. Inst

E. Schneider; Ph.D., Harvard Univ.

P. Schopf; Ph.D., Princeton Univ.

J. Shukla (director); Ph.D., B.H.U.; Sc.D., M.I.T
C. Stan; Ph.D., Colorado State Univ.

D. Straus (chair, AOES); Ph.D., Cornell Univ.




5 Myths About Big Data

1. There is a clear definition of Big Data. (I don’t know what it is, but I've got it!)
2. Big Data is new.
— Science has been using Big Data for a long time, e.g., Kepler “mining” the obs of Brahe.
— Statisticians: Big Data = Statistics, albeit sexier, more broadly applied
3. Big Data is revolutionary.
— More likely to have modest, gradual impact.
— Large effects are easy to recognize (small data), but handling subtleties require Big Data
4. Bigger data is better.
— Big data sets are hard to work with, even using automated methods.
— Bias can still be present in big data sets.
5. Big Data means the end of science.

— Can't go fishing for correlations and explain the world, e.g., spurious correlations or conflated
cause and effect

— Still need hypotheses, ideas and theories: “If you don’t ask good questions, your results can be
silly and meaningless”
“Having more data won’t substitute for thinking hard, recognizing
anomalies, and exploring deep truths.”
Samuel Arbeson, Wash. Post (18 Aug. 2013)
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Predictability* of the
Physical Climate System

Overarching Scientific Questions

What limits predictability at all time scales from days to decades? Is there a
fundamental limit? What is the role of model error? Initial conditions error?

How do the initial state, the coupling of system components, and the changes in
external forcing contributes to predictability at different time scales?

What aspects of the total climate system (troposphere, stratosphere, world
oceans, land surface, vegetation, sea ice, land ice, snow) are predictable in which
geographic regions, for which seasons, and how does that change in the future?
For the current and future generation of climate models and observing systems?

What is the optimal combination of models to predict means? Extremes?
No current models are perfect, e.g. for regional water cycle

* Note: Predictability is a necessary (but not sufficient) condition for attribution
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Why does climate research need
HPC and Big Data?

 Societal demand for information about
weather-in-climate and climate impacts
on weather

 Seamless days-to-decades prediction &
unified weather/climate modeling

 Multi-model ensembles and Earth
system prediction

 Requirements for data assimilation

eeeeee
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Driver: Societal Demand for
Climate Information

« America’s Climate Choices

(USGCRP) National Climate Assessment

QOO sV OE

* Intergovernmental Panel on Climate Change

IDCC

INTERGOVERNMENTAL PANEL oN ClimaTe change
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Regional Climate Change —
Beyond CMIP3 Models’ Ability?
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Driver: Seamless Prediction,
Unified Modeling

« Seamless prediction™. Viewing weather and
climate prediction as initial-boundary value
problems that share common processes and
dynamics and that can be addressed using unified
models with common methods across a broad range
of time scales and spatial resolutions.

* Note: Prediction implies starting from an observed initial state, which
in turn implies data assimilation
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Driver: Multi-Model Ensembles &
Total Climate System Prediction

Total Climate System — Earth System
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Balancing Demands on Resources

Physical Climate System

Atmospheric Physics/Dynamics

Terrestrial
Energy/Moisture

‘Ocean Dynamics

Assimilation §—>

Stratospheric
Chemistry/Dynamics

Biogeochemical Cycles Pollutants.

Computing
Resources

Resolution

5 year average

s6.
1880 1900 1920 1940 1960 1980 2000
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HPC & Big Data at COLA

Representative Projects

Project Athena: An International, Dedicated High-End
Computing Project to Revolutionize Climate Modeling

(Dedicated XT4 at NICS) - Update on CAS2K11 briefing
from Martin Miller

Project Minerva: Exploring High Spatial Resolution for
Seasonal Climate Prediction (Dedicated Advanced Scientific
Discovery on NCAR Yellowstone)

PetaApps Team: Climate Models’ Representation of
Unpredictable Noise in the Atmosphere, Ocean or Sea Ice
(TeraGrid Ranger and Kraken)
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Origins of Project Athena

e 2008 World Modeling Summit: dedicate
petascale supercomputers to climate
modeling

e U.S. National Science Foundation
offered to dedicate the Athena
supercomputer for 6 months in
2009-2010 as a pilot study

* An international collaboration (Project
Athena) was formed by groups in the U.S.,
Japan and the U.K. to use Athena to take
up the challenge

CAS2K13 September 2013 - Jim Kinter



Project Athena

Collaborating Groups

COLA - Center for Ocean-Land-Atmosphere Studies, USA (NSF-
funded)

ECMWEF - European Center for Medium-range Weather Forecasts,
UK

JAMSTEC - Japan Agency for Marine-Earth Science and
Technology, Research Institute for Global Change, Japan

University of Tokyo, Japan
NICS - National Institute for Computational Sciences, USA (NSF-

funded)
Cray Inc.
Codes
NICAM: Nonhydrostatic Icosahedral Atmospheric Model
IFS: ECMWEF Integrated Forecast System
\—_\‘—\ /GEORGE
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NICS Resources for
Project Athena

The Cray XT4 — Athena - the first NICS machine in
2008

— 4512 nodes w/ AMD 2.3 GHz quad-core CPUs + 4 GB
RAM

— 18,048 cores + 17.6 TB aggregate memory
— 165 TFLOPS peak performance
— Dedicated to this project during October 2009 — March
2010 - 72 million core-hours!
Other resources made available to project:
— 85 TB Lustre file system
Many thanks to — 258 TB auxilliary Lustre file system (called Nakji)

NI(;S for; rfesodurces — Verne: 16-core 128-GB system (data analysis) during
and sustaine production phase (2009-2010)

support! , _
— Nautilus: SGI UV with 1024 Nehelem EX cores, 8 GPUs, 4
TB memory, 960 TB GPFS disk (data analysis) in 2010-11
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Center for
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Project Athena Experiments

Model/Exp.| Resolution | # Cases | Period | Notes
NICAM / 21 May - 30 Aug
Hindcasts 7 km 8 103 days 2001 - 2009

IFS / 125 km 1 Nov - 30 Nov
Hindcasts 39 km 48 395 days (following year)
16 km 1960 - 2007
IFS / 1 Nov i 30 Nov
Hindcasts 10 km 20 (following year)
1989 - 2007
FS / 13295kknT 21 May - 30 Aug
) 9 103 days 2001 - 2009
Hindcasts 16 km NICAM analoas
10 km 9
IFS /
Summer 39 km 6 132 days | 21 May-305ep
16 km selected years
Ensembles
IFS / Winter 39 km 1 Nov - 31 Mar
Ensembles 16 km 6 151 days selected years
IFS / 39 km
AMIP 16 km 1 47 years 1961 - 2007
IFS / 39 km
Time Slice 16 km 1 47 years 2071 - 2117

http://wxmaps.org/athena/home/
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Project Athena Publications

Dawson, A., T. N. Palmer and S. Corti, 2012: Simulating regime structures in weather and
climate prediction models. Geophys. Res. Lett., 39, doi:10.1029/2012GL053284

Dirmeyer, P. A. and Co-Authors, 2012: Evidence for enhanced land-atmosphere feedback in a
warming climate. J. Hydrometeor., 13, 981-995.

Dirmeyer, P. A. and Co-Authors, 2011: Simulating the diurnal cycle of rainfall in global climate
models: Resolution versus parameterization. Climate Dyn. doi: 10.1007/s00382-011-1127-9.
Jung, T. and Co-Authors, 2011: High-Resolution Global Climate Simulations with the ECMWF
Model in the Athena Project: Experimental Design, Model Climate and Seasonal Forecast
Skill. J. Climate, doi:10.1175/JCLI-D-11-00265.1.

Kinter Ill, J. L. and Co-Authors, 2013: Revolutionizing Climate Modeling — Project Athena: A
Multi-Institutional, International Collaboration. Bull. Amer. Meteor. Soc., 94, 231-245.
Manganello, J. V. and Co-Authors, 2012: Tropical Cyclone Climatology in a 10-km Global
Atmospheric GCM: Toward Weather-Resolving Climate Modeling. J. Climate 25, 3867-3893.
Miyamoto, Y., M. Satoh, H. Tomita, K. Oouchi, Y. Yamada; C. Kodama, J. L. Kinter Ill, 2013:
Gradient wind balance in tropical cyclones in high--resolution--global experiments. Mon. Wea.
Rev. (submitted).

Palipane, E. and Co-Authors, 2013: Improved Annular Mode Variability in a Global Atmospheric
General Circulation Model with 16-km Resolution. J. Climate (submitted).

Satoh, M. and Co-Authors, 2011: Intra-Seasonal Oscillation and its control of tropical cyclones
simulated by high-resolution global atmospheric models. Climate Dyn., doi10.1007/
s00382-011-1235-6.

Solomon, A. and Co-Authors, 2013: The distribution of U.S. tornado risk in a changing climate.
J. Climate (submitted).




Sample Results

* Projection of climate change
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Europe Growing Season (Apr-Oct)
Precipitation Change: 20" C to 21stC

T159 (125-km) T1279 (16-km)

%,

-20 -10 -5 5 10 20%

“Time-slice” runs of the ECMWF IFS global atmospheric model with observed SST for the 20t century and CMIP3
projections of SST for the 215t century at two different model resolutions

The continental-scale pattern of precipitation change in April — October (growing season) associated with global warming is
similar, but the regional details are quite different, particularly in southern Europe.
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Dro

Future Change in Extreme Summer

ught Late 20" C to Late 215t C

4X probability of
extreme summer
drought in Great
Plains, Florida
Yucutan, and parts
of Eurasia

0

3

S 7 10 15

20

10™ Percentile Drought: Number of years out of 47 in a simulation of future climate (2071-2117) for which the June-August
mean rainfall was less than the 5t driest year of 47 in a simulation of current climate (1961-2007).

Center for
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Sample Results

* Tropical cyclones
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Athena - Clouds and
Precipitation

Boreal Summer 2009
Brian Doty
COLA

Oceandand-Atmosphere
Studies UNIVERSITY
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Project Athena: Summary

- * Good news: Extreme spatial resolution improves many of the
qualitative features of large-scale climate simulation

* As expected: High spatial resolution provides higher fidelity

representation of features sensitive to orography or geography

* Unexpected: Nonlinear dynamical effects can alter simulation
changes due to spatial resolution improvements much more and
possibly in different ways than we might have expected

* Bad news (as expected?): Large biases remain in hard-to-simulate
fields like tropical precipitation = still need to understand and
properly represent the effects of subgrid-scale physical processes
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Many thanks to
NCAR for

o
resources and

sustained
support!

Project Minerva

Explore the impact of increased atmospheric
resolution on model fidelity and prediction skill in a
coupled, seamless framework by using a state-of-
the-art coupled operational long-range prediction
system to systematically evaluate the prediction skill
and reliability of a robust set of hindcast ensembles at
low, medium and high atmospheric resolutions

NCAR Advanced Scientific Discovery Program to
inaugurate Yellowstone (72 K-core IBM iDataPlex)

Allocated 21 M core-hours on Yellowstone

Used ~28 M core-hours (Our jobs squeaked in under
core size that “broke” the system)
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Project Minerva

ECMWF team: COLA team:

Frederic Vitart, lead » Ben Cash, lead
Roberto Buizza « Rondro Barimalala

Erland Kallen * Paul Dirmeyer

|  Mike Fennessy
Franco Molteni e V. Krishnamurthy

Tim Stockdale « Julia Manganello
Peter Towers « David Straus
Nils Wedi University of Oxford:

« Tim Palmer
« Andrew Dawson

= (O
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ECMWF Coupled

Ensemble Systems

Atmosphere

Atmosphere |[spectral Atmosphere

Ocean

horizontal res,

equatorial Ocean vertical
refinement levels

System model cycle [truncation vertical levels |Ocean model

7~ MINERVA IFS cy 38r1 ﬁ’;g; 1639/ f; p'i"?'g’a g'ﬁ;\g? Y
System 4 IFS cy 36r4 T255 ?Jp'i"f'g’a ?E%ﬂ) v
) some RGO @i Ny
(Ee':i 2013) IFS cy 40r1 %ﬁ’g (eI ?01 p'i"f'g’a NEMO v 3.4

System 4: Operational seasonal prediction system
ENS: Operational medium-range/monthly prediction system

1 degree,

~ 0.3 deg. Lat o el

1 degree,
~03deg. Lat *2levels

1 degree,
~03deg. Lat 42levels

1 degree,
~ 0.3 deg. Lat w2 el

Courtesy Franco Molteni & Frederic Vitart, ECMWF

N—
Ocean-.and-Atmosphere
Studies
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ECMWF Coupled
Ensemble Systems

Time range of
ocean-

atmosphere
coupling perturbations |perturbations |perturbations

5 ocean

ERA-Interim + SV, EDA from analyses + SST

|- MINERVA OASIS-3 from start 3 hours Sllmese S

ORA-S4 2011 dates . + KE backscatter
perturbations
. 5 ocean analyses , ,.
ERA-Interim + 3-timescale SPPT
System 4 OASIS-3 from start 3 hours ORA-S4 SV + SST _ + KE backscatter
perturbations
generated by
ENS T 3hours  ERA-Interim + fl}/;reEr']DtAofrggem ENS member  2-timescale SPPT
(current) y ORA-S4 date fluxes during day + KE backscatter
1to 10
Sl Segil:f?gal’from start 3 hours SN c?L\J/r’reErlljtﬁ:rl?ergent 5 ocean analyses PRUIEEEELD SAR)
(end 2013) 9 ORA-S4 YS®S | KE backscatter
executable date
ORA-S4 : Ocean Re-Analysis for ECMWEF System-4 EDA : Ensemble of Data Assimilations (low-res 4D-var)
SV : Singular Vectors of 48-hour linear propagator SPPT : Stochastic Perturbation of Physical Tendencies scheme

Courtesy Franco Molteni & Frederic Vitart, ECMWF
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Mlnerva PredictionExperiments

m Years Em Duration (mon

T319 base 1980-2011 May, Nov
1319 2 year extension 1980-2011 15 May 24
T639 base 1980-2011 15 May, Nov 7
May: 5 mo
T639 extended ensemble 1980-2011 36 May, Nov Nov: 4 mo
T639 2 year extension 1980-2011 15 Nov 24
T1279 base 2000-2011 15 May 7
N— COLA CAS2K13 September 2013 - Jim Kinter l\'ﬁ?m
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Minerva vs. Athena — TC Frequency
(NH; JJASON; T1279)

TC Frequency for the NH, JUASON 2000-2008, T1279, Ident. Il
IBTrACS (red), Athena (green), Minerva (black)
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Precipitation

IC: 01 May 2013
Ens: 2 members
May Mean

Soil Wetness

Individual Forecast Anomalies

MAY 2013

Observations CGCM MINERVA t1279
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Individual Forecast Anomalies

MAY-JULY 2013

Observations CGCM MINERVA t1279
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Peta-Apps Team (2010-2012)

» Kinter, COLA (PI) « Ahearn, NCAR

« Collins, UC Berkeley (co-Pl) Bitz, U. Washington

« Kirtman, U. Miami (co-Pl) « Bryan, NCAR

« Loft, NCAR (co-PlI) « Dennis, NCAR

* Yelick, LBL (co-Pl) * Min, U. Miami
* Nolan, UC Berkeley
« Siquiera, U. Miami
« Stan, COLA

Many thanks to TACC and
NICS for resources and
sustained support!
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PetaApps Ralnfall Simulation
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Challenges and Tensions

« Making effective use of large allocations — takes a village

« Exaflood of data

» Resolution vs. parameterization

« Sampling (e.g. extreme events)

« Climate scientists are being forced to think about data & code issues

TENSIONS
HPC capability ¢, — Data analysis capacity
Automation/abstraction - @ - Human control
Data-driven development - — Science-driven development
Small, portable code —— — End-to-end tools
Tight, local control of data - — Distributed data

“Having more data won’t substitute for thinking hard, recognizing anomalies, and exploring deep truths.”
Samuel Arbeson, Wash. Post (18 Aug. 2013)
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Exaflood:
Challenge and Opportunity

 InJanuary 2007, Bret Swanson of the 3 i
Discovery Institute coined the term i) Ry v010/0/0/ 900,
. . Wy _///(/ﬂ/////////// 777
exaflood for the impending flood of M RS .
exabytes that would cause the Internet's g | R
congestive collapse.
=l
o PARADIGM
o \ 2 . DATA-INTENSIVE SCIENTIFIC DISCOVERY
« Hay et al., 2010: The Fourth Paradigm -
————— /GEORGE
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Data Volumes

« Project Athena: Total data volume 1.2 PB (~500 TB unique)*
Spinning disk 40 TB at COLA
0 TB at NICS (was 340 TB)

* no home after April 2014
* Project Minerva: Total data volume 0.9 PB (~700 TB unique)

Spinning disk 100 TB at COLA
500TB at NCAR (for now)

« That much data breaks everything: H/W, systems management
policies, networks, apps S/W, tools, and shared archive space

 NB: Generating 700 TB using 28 M core-hours took ~3 months;
this would take about a day on a system with 1M cores!
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Athena and Minerva:
Harbingers of the Exaflood

« Familiar diagnostics are hard to do at very high resolution

« Have we wrung all the “science” out of the data sets, given that we
can only keep a small percentage of the total data volume on
spinning disk? How can we tell?

« Must move from ad hoc solutions - systematic, repeatable solutions
(transform Noah's Ark = a Shipping Industry)

 ‘“We need exaflood insurance.”
- Jennifer Adams
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