

Improvement of MPAS on the Integration Speed and the Accuracy

Wonsu Kim, Ji-Sun Kang, Jae Youp Kim, and Minsu Joh

Disaster Management HPC Technology Research Center, Korea Institute of Science and Technology Information

Contents

- 1. Introduction
- 2. CPU-GPU heterogeneous code
- 3. Verification of Typhoon track forecast by MPAS
- 4. Ensemble-based data assimilation system
- 5. Scalability test
- 6. Summary

Introduction

KISTI has been collaborating on a development of MPAS with NCAR MMM since 2014

neight (km)

WRF

- Lat-Lon global grid
- Anisotropic grid cells
- Polar filtering required
- Poor scaling on massively parallel computers
- Grid refinement through domain nesting
- Flow distortions at nest boundaries
 - Pressure-based terrainfollowing sigma vertical coordinate
 A hybrid sigma-pressure
 - vertical coordinate is added in WRFV3.9

MPAS

- Unstructured Voronoi (hexagonal) grid
- Good scaling on massively parallel computers
- No pole problems
- Smooth grid refinement on a conformal mesh
- Increased accuracy and flexibility in varying resolution
- Height-based hybrid smoothed terrain-following vertical coordinate
- Improved numerical accuracy

Park et al. (2015, KMS)

Introduction

 MPAS-TC (K-MPAS) which is suitable for typhoon forecast over the western Pacific has been developed through improving physics schemes and constructing appropriate variable resolution meshes.

	MPAS(v5.2)	K-MPAS(v5.1)	
Convection	Tiedtke scheme (Tiedtke, 1989; Zhang et al., 2011)	Tiedtke scheme - Optimization for the simulation of TCs	
Surface flux	Monin-Obukhov (Fairall et al., 2003)	Monin-Obukhov - Improvement of surface flux (Davis, 2008) - False alarm in which strong typhoons were frequently occurred were reduced	
1D ocean mixed-layer	Х	0	
GPU acceleration	Х	0	

- For the next steps, KISTI is making efforts to improve the integration speed and the accuracy of K-MPAS
 - Development of CPU-GPU heterogeneous code
 - Development of ensemble-based data assimilation system

CPU and Accelerator

MINIDIA TESI

- In the past, it was common to use CPU-based cluster system
- Recently, CPU and accelerator can be used together to improve the computing performance

Xeon Phi

GPU Accelerator

- Multi core CPU
- Few very complex core
- Single thread performance optimization
- Many core GPU
- Thousands of simpler cores
- Thousands of concurrent hardware threads

From http://www.electronicspecifier.com/communications/vivante-es-design-magazine-gpus-the-next-must-have

GPU

How to use GPU for General Purpose

Korea Institute of Science and Technology Information

- "More Science, Less Programming"
- OpenACC is a directive-based programming model
- Easy, Simple, Powerful

Development of CPU-GPU heterogeneous code

 For the development of MPAS hybrid code, we have discussed with NCAR CISL since December in 2015.

Kisti Korea Institute of Science and Technology Information

MPAS Physics Execution Time on CPU

Korea Institute of

Science and Technology Information

KiST

Computation Cost of MPAS Physics (CPU 32 cores VS 4 GPUs)

PGI-17.5, 60km resolution (# of cells: 163842), 41 vertical layers, dt=180s, 1 day forecast Haswell E5-2698 v3 @ 2.30GHz, dual socket 16-core NVIDIA Tesla P100

Performance of K-MPAS for TC track forecast

• 2016 Typhoon track forecast (12 cases)

WRF-ba	sed TC forecast models of KISTI	-
Model	Feature	
SatSST	SST is updated by using satellite observation	
1D Ocean	1D ocean model is coupled to WRF	
DynamicINIT	Dynamic initialization of TC is applied	-
		-

(1)

Korea Institute of

Science and Technology Information

Performance of K-MPAS for TC track forecast

• 2016 Typhoon track forecast (12 cases)

Korea Institute of Science and Technology Information

- K-MPAS shows a good performance for the TC track forecast
- Data assimilation has not been applied to the MPAS yet.

Data assimilation

• A statistical combination of observations and short-range forecasts

"Using all the available information, to determine as accurately as possible the state of the atmospheric (or oceanic) flow"
Talagrand (1997)

• We usually utilize two independent information of observation and model forecast to obtain the best estimate of the true state of the nature.

Sources of information – Observations

Ground-based measurements

Remote sensing data from the satellites

- Observations provide information with instrumental errors
- The information is limited in time and space

Sources of information – Numerical models

- Partial differential equations of physical laws w.r.t. time
 - $x_n = \mathbf{M}(x_{n-1})$
 - x: a state of variables
 - (e.g. wind, temperature, humidity, etc.)
 - *n*: time index
 - M: nonlinear numerical model

- Discretization of the equations for the model grids
- Limited accuracy of the model M (e.g. sub-grid phenomena)
- → errors of initial data (x_{n-1}) can grow quickly due to chaotic nature of the atmosphere (even when the model is perfect!)

Ensemble-based data assimilation system

Science and Technology Information

- Success of data assimilation strongly depends on how accurate we can estimate errors of the information.
 - Model error is much more complicated and difficult to estimate than observation error because it highly depends on *atmospheric instability*, observation density, etc.
 - Especially for the extreme weather, it is essential to estimate *real-time forecast error* as accurate as possible

→ In such cases, ensemble data assimilation (EnKF) is certainly advantageous to a variational DA (VAR) because EnKF considers "errors of the day" while VAR uses static forecast error estimates.

EnKF data assimilation

Local Ensemble Transform Kalman Filter (Hunt et al. 2007 Kite Science and Technology Information

- Forecast of numerical model should be transformed to the observation space *globally*.
 - Observation operator (spatial interpolation and variable transformation)
- For an analysis at one point, LETKF uses only neighborhood information within a local region, which is a part of "embarrassingly parallel".

Special treatment of LETKF for MPAS

Korea Institute of Science and Technology Information

• Defining feature of MPAS

(ref. MPAS tutorial)

Fields in MPAS-Atmosphere may be defined at

- Cell locations (blue circles) the generating points of the Voronoi mesh
- Vertex locations (cyan triangles) the corners of primal mesh cells
- **Edge** locations (green squares) the points where the dual mesh edges intersect the primal mesh edges

In MPAS-A, these locations are used to implement a C-staggered grid based on the Voronoi tessellation: prognosed normal velocities are located at *edges*, and other prognosed quantities are nominally located at *cells*.

"I know many advantages of unstructured grid, but it makes implementation of LETKF more difficult!"

u_zonal and u_meridional

4-dimensional LETKF

KISTI Korea Institute of Science and Technology Information

MPAS-LETKF @ KISTI

- Current system can assimilate NCEP prepbufr conventional data.
- Now, we're working on radiance data assimilation with AMSU-A, which requires variable transformation in the observation operator (RTTOV v. 11.0).

Scalability test – Model configuration and Test plan

3-15 km mesh

# of cores	exp1	exp2	exp3
1024			
2048			
4096	CDF5	NetCDF4	CDF5
8192			
16384			
32768			X

<u>Numerics</u>

- Model top ~ 30 km
- Model levels ~ 56 levels
- Mesh size ~ 6,488,066 cells

<u>Physics</u>

- Surface Layer : Monin-Obukov
- PBL : YSU
- Land Surface Model : NOAH 4-layers
- Convection : Tiedtke
- Microphysics : WSM6
- Radiation : RRTMG
- Ocean Mixed Layer (modified from WRFV3.6)

Kisti Korea Institute of Science and Technology Information

- We integrated the model for 6-hr forecast with dt=15sec → 1440 timesteps
- 17 runs have been conducted.
- 32768-core run for exp3 could not be completed due to the short time limit.
- The runs with CDF5 format show much faster I/O than those with NetCDF4 format. Therefore, we planed to run the exp3 with CDF5 format
- The runs with 16384 & 32768 cores have serious issue related to the I/O bottleneck using NetCDF4 format. Thus, we also tried not using PIO lib.

Scalability test – Total time

of cores

As the number of cores increases, I/O occupies more time of total run-time.

Summary

CPU-GPU heterogeneous code
MPAS-LETKF system

✤ What's next?

- Coupling with Ocean model (i.e., MOM)
- Modifying or developing physics schemes for the severe weather forecast over the East Asia

Thank you