
Performance, accuracy and bit-reproducibility
aspects in handling transcendental functions

with Cray and Intel compilers for
the Met Office Unified Model

Dr. Ilia Bermous, the Australian Bureau of Meteorology

Acknowledgements to

Dr. Martyn Corden (Intel), Dr. Zhang Zhang (Intel), Dr. Martin Dix (CSIRO)

Some requirements for
meteorological applications

 Performance
 vectorisation
 human factor: time spent to achieve a certain level in the

performance gain

Accuracy
 single & double precision in weather forecasting models

Results bit-reproducibility

Note: all above mentioned aspects are applied for handling
transcendental functions in an application and will be discussed in
the presentation

Vector processing: Fortran compiler
options related to the architecture

Intel compiler: -xcode for specific processor architecture
 AVX – Intel Xeon processor E3/E5 and E3/E5/E7 v2 family
 CORE-AVX2 - Intel Xeon processor E3/E5/E7 v3, v4 family
 CORE-AVX512 – Intel Xeon Processor Scalable Family
 Host – architecture on which the code is compiled

Cray compiler: -h cpu=target_system

Compiler options set via modules on our XC-40 systems are

Module Cray compiler Intel compiler
craype-sandybridge -hcpu=sandybridge -mavx
craype-haswell -hcpu=haswell -xCORE-AVX2
craype-broadwell -hcpu=broadwell -xCORE-AVX2

Results bit-reproducibility

Means getting identical results on a job rerun

Benefits: useful in testing, debugging, tracking down code
bugs or numerical instability

Numerical implementation of UM includes a setting which
provides results bit-reproducibility using different number of
threads for the same horizontal decomposition

Rerun bit-reproducibility

Intel Fortran compiler => need to specify
-fp-model precise

 may effect vectorisation of loops for some transcendental
functions called within the loops

Note: below
 any reference to a compiler means Fortran compiler
 -fp-model precise is used in the Intel compiler case

 Cray compiler : results bit-reproducibility may depend on
-h flex_mp=level

Accuracy in calculation of
transcendental functions

Accuracy is measured in terms of ULP
(unit in the last place or unit of least precision)

 accuracy for Cray CCE math libraries is controlled by –hfpN
option

Note: –hfp4 is used to compile the majority of UM files

Intel compiler Cray compiler
default -fp-model precise -hfp0|-hfp1|-hfp2 -hfp3 -hfp4

4 ULP 0.6 ULP 1.3 ULP 2.6 ULP 4 ULP

Vectorisation information for some
transcendental functions in loops

With the Cray compiler and the Intel compiler with -fp-model precise,
loops are

- vectorised with SQRT, SIN, COS, EXP

- NOT vectorised with ASIN, ACOS, ATAN

Power (x^y) ALOG ALOG10 TANH ATAN2
Cray compiler Yes Yes No No Yes
Intel compiler No No No Yes No

Can loops for all transcendental
functions be vectorised?

 Cray compiler: NO (as far as I know)

 Intel compiler: YES in two ways

 -fast-transcendentals -fimf-precision=<value>

<value> = high | medium | low

high - 1 ULP, used in this presentation
medium - 4 ULP, also tested with very similar performance
low – not used

 Intel Math Kernel Library (MKL) library using vector math
library (the error usually is <0.75 ULP with high accuracy)

Environment for implementation

 Hardware
 Cray XC-40 (Terra), Intel Xeon E5-2690 v3, 2.6 GHz

136 nodes with 24 cores/node (3264 cores)

Software
 Intel compiler v17.0.1.132
 Cray cce 8.4.5
 Cray MPICH 7.3.2
 MPI_WTIME – for time measurements

UM job description

 UM10.7 sources (Feb 2017)

 N768L70 (1532x1152x70 grid size) global model

 24 hour (192 time steps) forecast with switched off I/O to tune
computational capability of the model sources

 run configuration: 16x30 - horizontal decomposition with 2
threads on 960 cores
 elapsed time for the job is 920-950 sec

Note: the job was used within the OpenMP coverage improvement
collaboration project with the Met Office for UM10.4-10.8 releases

Example: departure_point_eta_mod.F90

Subroutine includes 8 three-level nested loops:

251 DO k = 1, model_levels
252 DO j = udims%j_start, udims%j_end
253 DO i = udims%i_start, udims%i_end
. . .
276 z_d = SQRT(1.0 - x_d**2 - y_d**2)
277
278 depart_xi1(i,j,k) = xi1_u(i) + &
279 ATAN2(x_d,z_d*csxi2_p(j)-y_d*snxi2_p(j))
280 depart_xi2(i,j,k) = ASIN(y_d*csxi2_p(j)+z_d*snxi2_p(j))
281 depart_xi3(i,j,k) = eta_rho_levels(k) - timestep*w_a
282 END DO
283 END DO
284 END DO

Cray compiler loopmark output for
the loop

Loopmark output with –rm compiler option

251. + M m----------< DO k = 1, model_levels
252. + M m 3--------< DO j = udims%j_start, udims%j_end
253. M m 3 Vp-----< DO i = udims%i_start, udims%i_end
. . .
276. M m 3 Vp z_d = SQRT(1.0 - x_d**2 - y_d**2)
277. M m 3 Vp
278. M m 3 Vp depart_xi1(i,j,k) = xi1_u(i) + &
279. M m 3 Vp ATAN2(x_d,z_d*csxi2_p(j)-y_d*snxi2_p(j))
280. M m 3 Vp depart_xi2(i,j,k) = ASIN(y_d*csxi2_p(j)+z_d*snxi2_p(j))
281. M m 3 Vp depart_xi3(i,j,k) = eta_rho_levels(k) - timestep*w_a
282. M m 3 Vp-----> END DO
283. M m 3--------> END DO
284. M m----------> END DO

A loop starting at line 253 was partially vectorized.

Comments:
 the inner loop is only partially vectorised
 the loopmark output does not provide details on what is not vectorised

Intel compiler diagnostic for the loop

-fp-model precise -qopt-report=5 -qopt-report-phase=vec

LOOP BEGIN at <path>/departure_point_eta_mod.F90(253,9)
remark #15382: vectorization support: call to function atan2 cannot be vectorized [

<path>/departure_point_eta_mod.F90(279,31)]
remark #15382: vectorization support: call to function asin cannot be vectorized [

<path>/departure_point_eta_mod.F90(280,31)]
remark #15344: loop was not vectorized: vector dependence prevents vectorization

LOOP END

-fp-model precise -fast-transcendentals -fimf-precision=high
-qopt-report=5 -qopt-report-phase=vec

LOOP BEGIN at <path>/departure_point_eta_mod.F90(253,9)
. . .

remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.303
remark #15300: LOOP WAS VECTORIZED
remark #15476: scalar cost: 413
remark #15477: vector cost: 107.250
remark #15478: estimated potential speedup: 3.690
remark #15482: vectorized math library calls: 2

LOOP END

Time measurements for
departure_point_eta_mod loops

𝑻𝑻 = – average time taken by MPI process

ti – total time for all 8 loops taken by MPI process with rank #i
(the job is run on 480 MPI processes)

Compilation options for departure_point_eta_mod.F90

Cray compiler: -hcpu=haswell -O3 -hvector3 -hscalar3
-hfp4 -hcache3 -haggress -hnocontiguous
–hconcurrent -hflex_mp=default

480
479

0

∑
=i

it

Time measurements for
departure_point_eta_mod loops (cont #2)

Intel compiler

STANDARD
-align array64byte -qopenmp -O3 -fp-model precise -xavx (1)

FAST_TRANS
(1) "+" -fast-transcendentals -fimf-precision=high (2)

FAST_TRANS+AVX2
(2) with replacement –xavx => -xCORE-AVX2 (3)

Time measurements for
departure_point_eta_mod loops (cont #3)

Conclusions:
 usage of -fast-transcendentals -fimf-precision=high

reduces the elapsed time by over 2 times

 the shortest elapsed time with the Intel compiler is 1.75 times
better than with the Cray compiler

 minor speed up from AVX2

Cray Intel
STANDARD FAST_TRANS FAST_TRANS+AVX2

49.7 sec 63.1 sec 29.8 sec 28.4 sec

Usage of MKL in UM

Frequently called transcendental functions in the UM sources are
managed by the following procedure:

SUBROUTINE exp_v(n,x,y)
. . .
#if defined(MKL)
CALL vdexp(n, x, y)
#else
DO i=1, n
y(i) = EXP(x(i))

END DO
#endif
END SUBROUTINE exp_v

Similar routines are available in UM for
EXP, SQRT, LOG, SIN, COS, ASIN, ACOS, . . .

Performance results with Intel compiler

Build #1: STANDARD optimised build

Build #2: FAST_TRANS build for all model files

Build #3: FAST_TRANS build for all model files "+" pre-processor options
are set to use the MKL library (-DMKL)

Conclusions:
• fast-transcendentals provide a reduction in the elapsed time for the job

by ~5% with a relatively minor effort

• MKL has no additional benefit

STANDARD FAST_TRANS FAST_TRANS + MKL
918 sec 874 sec 877 sec

Performance results comparison for
Intel and Cray compilers

Using the same run environment

Intel compiler => 874 sec

Cray compiler => 952 sec
with Cray compiler options set at the Met Office with
enabled inter-procedural optimisation

Conclusion:

• elapsed time with the Intel compiler is 9% better than with the
Cray compiler

Conclusions

 Intel compiler
 using fast-transcendentals and MKL library

o vectorisation of some loops is improved
o relatively good performance gains can be achieved

• factor of 2 speed-up for SL departure point
calculations loops

• 5% improvement for full model
o relatively minor effort required

 Cray compiler
 at this stage it is not clear on whether a similar

performance benefits are achievable with the compiler

Thank

you

	Performance, accuracy and bit-reproducibility aspects in handling transcendental functions with Cray and Intel compilers for �the Met Office Unified Model�
	Some requirements for meteorological applications
	Vector processing: Fortran compiler options related to the architecture
	Results bit-reproducibility
	Rerun bit-reproducibility
	Accuracy in calculation of transcendental functions
	Vectorisation information for some transcendental functions in loops
	Can loops for all transcendental functions be vectorised?
	Environment for implementation
	UM job description
	Example: departure_point_eta_mod.F90
	Cray compiler loopmark output for the loop
	Intel compiler diagnostic for the loop
	Time measurements for departure_point_eta_mod loops
	Time measurements for departure_point_eta_mod loops (cont #2)
	Time measurements for departure_point_eta_mod loops (cont #3)
	Usage of MKL in UM
	Performance results with Intel compiler
	Performance results comparison for Intel and Cray compilers
	Conclusions
	Slide Number 21

