

Sunway TaihuLight: Designing and Tuning Scientific Applications at the Scale of 10 Million Cores

Haohuan Fu

National Supercomputing Center in Wuxi Department of Earth System Science, Tsinghua University

September 13th 2017 @ ICAS

Outline

Scientific Computing with 10 Million Cores

Long Term Plan for Sunway TaihuLight

Sunway-I:

- CMA service, 1998
- commercial chip
- 0.384 Tflops
- 48th of TOP500

- Sunway BlueLight:
- NSCC-Jinan, 2011
- 16-core processor
- 1 Pflops
- 14th of TOP500

Sunway TaihuLight: - NSCC-Wuxi, 2016 - 260-core processor - 125 Pflops

- 1st of TOP500

The Sunway Machine Family

SW26010: Sunway 260-Core Processor

- computing node
- computing board
- super node
- cabinet
- entirecomputingsystem

- computing node
- computing board
- super node
- cabinet
- entirecomputingsystem

- computing node
- computing board
- super node
- cabinet
- entirecomputingsystem

- computing node
- computing board
- super node
- cabinet
- entirecomputingsystem

A Five-Level Integration Hierarchy

- computing node
- computing board
- super node

cabinet

entirecomputingsystem

40×4×256×4×(1+8×8) = 10,649,600

 $40 \times 4 \times 256 \times 4 \times (1+8 \times 8) = 10,649,600$ 2D core array with row and column buses

 $40 \times 4 \times 256 \times 4 \times (1+8 \times 8) = 10,649,600$ 2D core array with row and column buses

Network on Chip

Satoshi Matsuoka @ProfMatsuoka

I was quite impressed with the engineering quality of TaihuLight, different from previous Chinese machines; now truly rivals US, Japan in SC twitter.com/profmatsuoka/s...

下午4:40 - 2016年11月3日 发自 東京 目黒区

@ProfMatsuoka

Finally their design was cost&utility conscious. No expensive parts, quacky architecture, etc. Sunway apparently plans to sell the machine.

下午6:08 - 2016年11月3日

Satoshi Matsuoka
@ProfMatsuoka

Finally their design was cost&utility conscious. No expensive parts, quacky architecture, etc. Sunway apparently plans to sell the machine.

下午6:08 - 2016年11月3日

Sunway Micro

Outline

Scientific Computing with 10 Million Cores

Long Term Plan for Sunway TaihuLight

Machine Capability Comparison

Major Features to Consider

Sunway TaihuLight

Major Features to Consider

Major Challenge #1: Scaling

Major Challenge #2: Memory Wall

Sunway TaihuLight

Major Challenge #2: Memory Wall

2016

Fully Implicit Solver for Atmospheric Dynamics

Surface Wave Modeling

Phase Field Simulations of Coarsening Dynamics

Atomistic Simulation of Silicon Nanowires

Run-away Electron Trajectory Simulation

Genome Functional Annotation and Homeotic Gene Building

Spacecraft CFD Numerical Simulation

2017

Extreme-scale Graph Processing Framework

Simulation of Planetary Rings

Simulations of Quantum Spin Liquid States via PEPS++

Molecular Dynamics Simulation of Condensed Covalent Materials

cryo-EM Macromolecule Structure Determination

Redesigning CAM-SE

2016 Gordon Bell Finalists

Fully Implicit Solver for Atmospheric Dynamics

Surface Wave Modeling

Phase Field Simulations of Coarsening Dynamics

Atomistic Simulation of Silicon Nanowires

Run-away Electron Trajectory Simulation

Genome Functional Annotation and Homeotic Gene Building

Spacecraft CFD Numerical Simulation

2017

Extreme-scale Graph Processing Framework

Simulation of Planetary Rings

Simulations of Quantum Spin Liquid States via PEPS++

Molecular Dynamics Simulation of Condensed Covalent Materials

cryo-EM Macromolecule Structure Determination

Redesigning CAM-SE

2016 Gordon Bell Prize

Fully Implicit Solver for Atmospheric Dynamics

Surface Wave Modeling

Phase Field Simulations of Coarsening Dynamics

Atomistic Simulation of Silicon Nanowires

Run-away Electron Trajectory Simulation

Genome Functional Annotation and Homeotic Gene Building

Spacecraft CFD Numerical Simulation

2017

Extreme-scale Graph Processing Framework

Simulation of Planetary Rings

Simulations of Quantum Spin Liquid States via PEPS++

Molecular Dynamics Simulation of Condensed Covalent Materials

cryo-EM Macromolecule Structure Determination

Redesigning CAM-SE

2016 Gordon Bell Prize

Fully Implicit Solver for Atmospheric Dynamics

Surface Wave Modeling

Phase Field Simulations of Coarsening Dynamics

Atomistic Simulation of Silicon Nanowires

Run-away Electron Trajectory Simulation

Genome Functional Annotation and Homeotic Gene Building

Spacecraft CFD Numerical Simulation

2017 Gordon Bell Finalists

Extreme-scale Graph Processing Framework

Simulation of Planetary Rings

Simulations of Quantum Spin Liquid States via PEPS++

Molecular Dynamics Simulation of Condensed Covalent Materials

cryo-EM Macromolecule Structure Determination

Redesigning CAM-SE

Application (I): Implicit Solver for Atmospheric Dynamics

Strong-scaling results

The 3-km res run: 1.01 SYPD with 10.6M cores, dt=240s, I/O penalty <5%

Weak-scaling results

The 488-m res run: 0.07 SYPD, 10.6M cores, dt=240s, 89.5X speedup over explicit

Application (II): Porting CESM and Redesigning CAM-SE for Sunway TaihuLight

Tsinghua + BNU 30+ Professors and Students

Four component models, millions lines of code
Large-scale run on Sunway TaihuLight

- 24,000 MPI processes
- Over one million cores
- 10-20x speedup for kernels
- 2-3x speedup for the entire model

"Refactoring and Optimizing the Community Atmosphere Model (CAM) on the Sunway TaihuLight Supercomputer", in Proceedings of SC 2016.

Application (II): Porting CESM and Redesigning CAM-SE for Sunway TaihuLight

Tsinghua + BNU 30+ Professors and Students

• Four component models, millions lines of code • Large-scale run on Sunway TaihuLight

- Over one million cores
- 10-20x speedup for kernels
- 2-3x speedup for the entire model

"Refactoring and Optimizing the Community Atmosphere Model (CAM) on the Sunway TaihuLight Supercomputer", in Proceedings of SC 2016.

fraction

Major Challenges

a high complexity in application, and a heavy legacy in the code base (millions lines of code)

an extremely complicated MPMD program with no hotspots (or hundreds of hotspots)

misfit between the in-place design philosophy and the new architecture

lack of people with interdisciplinary knowledge and experience

OpenACC-based Refactoring of CAM

Pass tracers (u, v) to dynamics

CAM model: scalability and speedup

MPE only

MPE+CPE for dynamic core
MPE+CPE for both dynamic core and physics schemes

Athread-based Fine-grained Redesign

- Step 1: rewrite of Fortran OpenACC code to Athread C code
 - finer memory control through a specific DMA scheme
 - more efficient vectorization

- Step 2: register-communication based redesign
 - remove data dependency
 - expose more parallelism

		elek			ele _{k+7}		
	and the		C0,0		C0,7	7	
	Caller						
			C7,0		[C7,7	7	
		L	i		<u> </u>		
Stage 1	Ci, j	a _{16*i}	a _{16*i} +a _{16*i+1}		a _{16*i} ++a _{16*i+15}		
Stage 2	C0,0	a ₀	$a_0 + a_1$		a ₀ ++a ₁₅	(p ₁₅)	
						Ť (
	C1,0	a ₁₆	a8+a9	•••	a ₁₆ ++a ₃₁ +	$p_{15} = p_{31}$	
						··· ···	
	Ck, 0	a _k	$a_k + a_{k+1}$		a _k ++a _{k+15} +	$p_{111} = p_{127}$	
Stage 3	Ci. i	a 16*i	a _{16*i} + a _{16*i+1}		a _{16*i} ++a _{16*i+15}	(p _{16*i})	
	, j	L		ł			

1 Sunway CG (64 CPEs) could be equivalent to 0.1x Intel Core or 1.8x Intel Core or 7.2x Intel Core or in certain cases 43.1x Intel Core

Performance Improvement through Redesign

Simulation of Hurricane Katrina

Application (III): Nonlinear Earthquake Simulation on Sunway TaihuLight

- Dynamic rupture source generator (originated from CG-FDM)
- Seismic wave propagation (originated from AWP-ODC)
- Other utilities:
 - source partitioner
 - 3D Model Interpolator
 - Restart controller

Multi-Level Domain Decomposition

A Balanced Memory Scheme

On-the-fly Compression

Speedup: 64 CPE vs 1 MPE

Speedup

Memory Bandwidth Utilization

Weak Scaling

Revenue Disperticit policy Center II that

Strong Scaling

Simulation Results: 200m vs 16m

Outline

Scientific Computing with 10 Million Cores

Long Term Plan for Sunway TaihuLight

Traditional HPC Applications (Science -> Service) Deep Learning Related Applications

Sunway Micro

"15-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of Realistic 10 Hz Scenarios", Gordon Bell Prize Finalist, SC 2017.

Traditional HPC Applications (Science -> Service) Deep Learning Related Applications

Sunway Micro

Traditional HPC Applications (Science -> Service) Deep Learning Related Applications

Sunway Micro

Acknowledgements

- MOST, China: major sponsors of the HPC hardware and software development
- NRCPC: vendor of the machine
- NCAR: Rich Loft, John Dennis, Allison Baker, Haiying Xu (support and advice on the CAM-SE work)
- SCEC: Yifeng Cui, Steve Day, Daniel Roten, Kim Olsen, Josh Tobin, Alex Breuer, and Dawei Mu (discussion and advice on the earthquake simulation work)

THANK YOU