

DEEP LEARNING PROJECTS IN WEATHER, CLIMATE AND SPACE

David M. Hall Senior Solution Architect NVIDIA Sept 2019

AI CAN DO IMPRESSIVE THINGS

DEFEAT WORLD CHAMPION STRATEGISTS

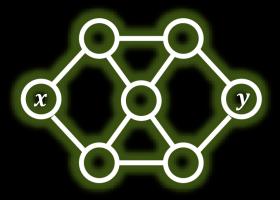
COMMUNICATE IN NATURAL LANGUAGE

OPERATE VEHICLES AUTONOMOUSLY

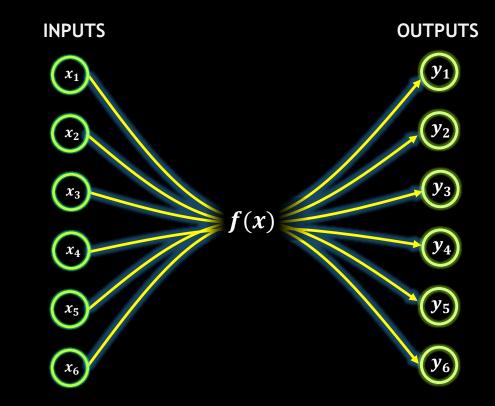
GENERATE ORIGINAL CONTENT

DEEP LEARNING BUILDS FUNCTIONS FROM DATA

Find f, given x and y

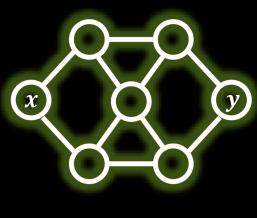


SUPERVISED DEEP LEARNING

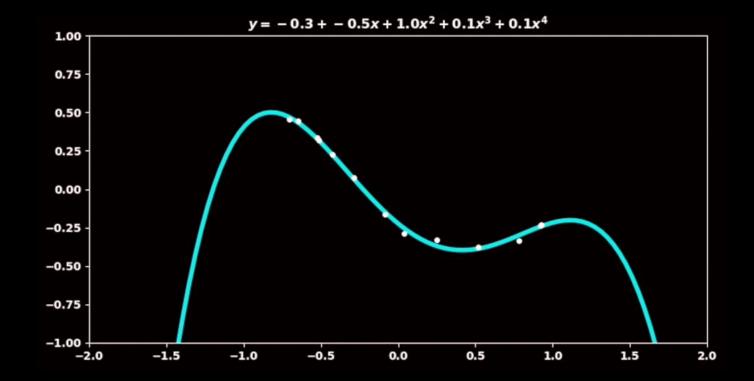


IT'S A GENERALIZATION OF CURVE FITTING

Find f, given x and y

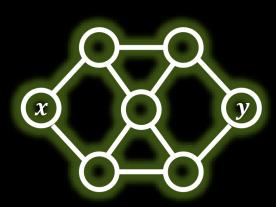


Supervised Deep Learning

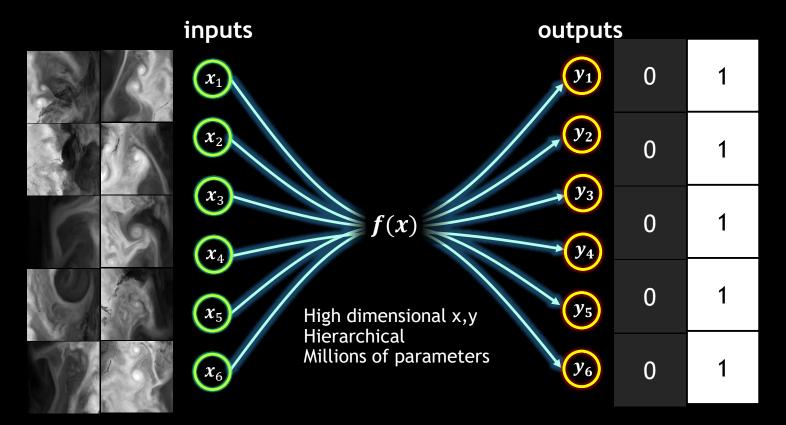


CURVE FITTING IN VERY HIGH DIMENSIONS

Find f, given x and y



Supervised Deep Learning



IT'S A NEW TOOL FOR SOFTWARE DEVELOPMENT

HAND-WRITTEN FUNCTION
Function1(T,P,Q)
update_mass()
update_momentum()
update_energy()
<pre>do_macrophysics()</pre>
<pre>do_microphysics()</pre>
y = get_precipitation()
return y

Convert expert knowledge into a function

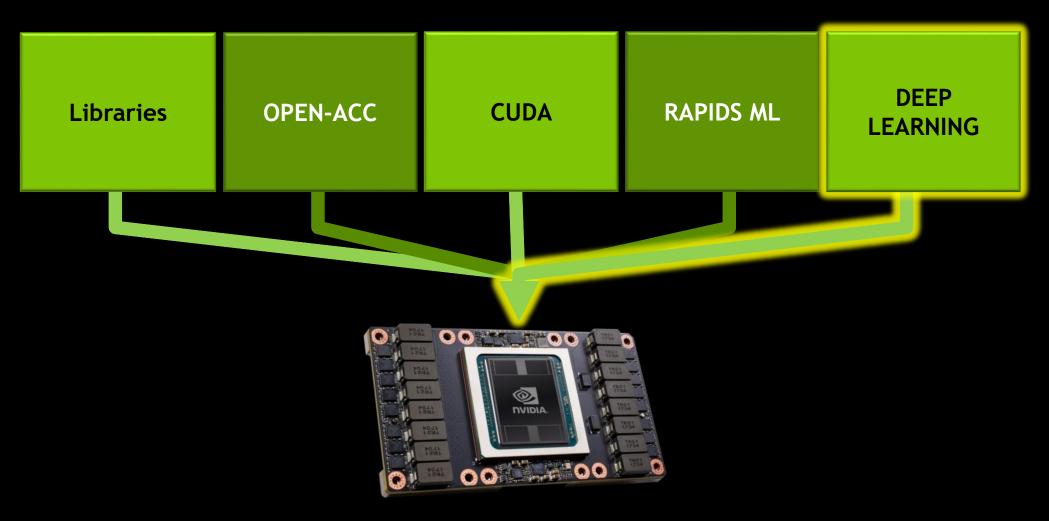
LEARNED FUNCTION

Function1(T,P,Q)	
A = relu(w1 * [T,P,Q]	+ b1)
B = relu(w2 * A	+ b2)
C = relu(w3 * B	+ b3)
D = relu(w4 * C	+ b4)
E = relu(w5 * D	+ b5)
y = sigmoid(w6 * E	+ b6)
return y	

Reverse-engineer a function from inputs / outputs

LEARNED FUNCTIONS ARE GPU ACCELERATED

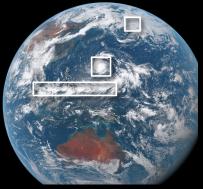
MAKES EFFECTIVE USE OF NVIDIA GPUS



WE CAN ENHANCE EXISTING APPLICATIONS

Improve all stages of numerical weather prediction

WE CAN BUILD NEW CAPABILITIES



REAL-TIME WEATHER DETECTION

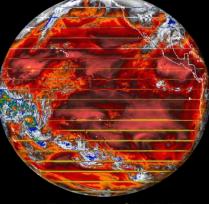
ENVIRONMENTAL MONITORING

DISASTER PLANNING, SEARCH AND RESCUE

NEAR-EARTH OBJECT DETECTION

ACCELERATED DATA ASSIMILATION

AUTONOMOUS SENSORS AND ROVERS



DATA ENHANCEMENT AND REPAIR

FASTER / MORE ACCURATE PARAMETERIZATIONS EXAMPLE APPLICATIONS: FEATURE DETECTION

REAL-TIME WEATHER DETECTION

NOAA ESRL & NVIDIA

An interesting application of AI is the real time detection of features of interests, such as tropical storms, hurricanes, tornados, atmospheric rivers, volcanic eruptions, and more. Using AI we can rapidly process the data streaming in from multiple satellites around the globe, enabling us to examine every pixel in detail for important information.

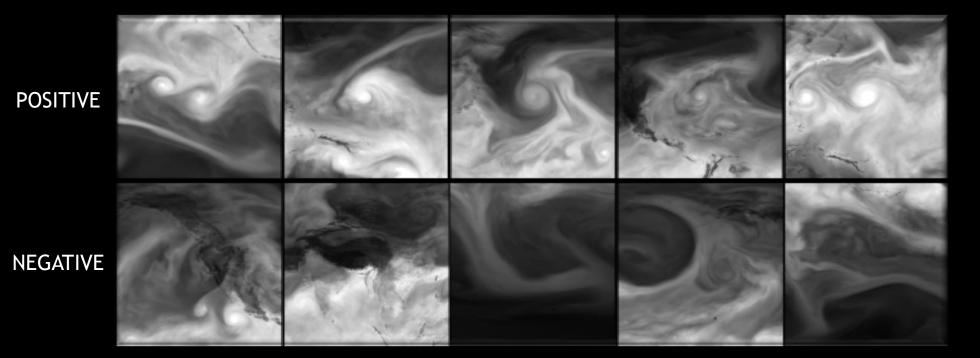
TYPHOON SOUDELOR FEATURE 2 GUST: 180 MPH CAT: 5 Feature 3

FEATURES OF INTEREST

- Tropical Cyclones
- Extra-tropical Cyclones
- Atmospheric Rivers
- Storm Fronts
- Tornados
- Convection Initiation
- Cyclogenesis
- Wildfires
- Blocking Highs
- Volcanic Eruptions
- Tsunamis

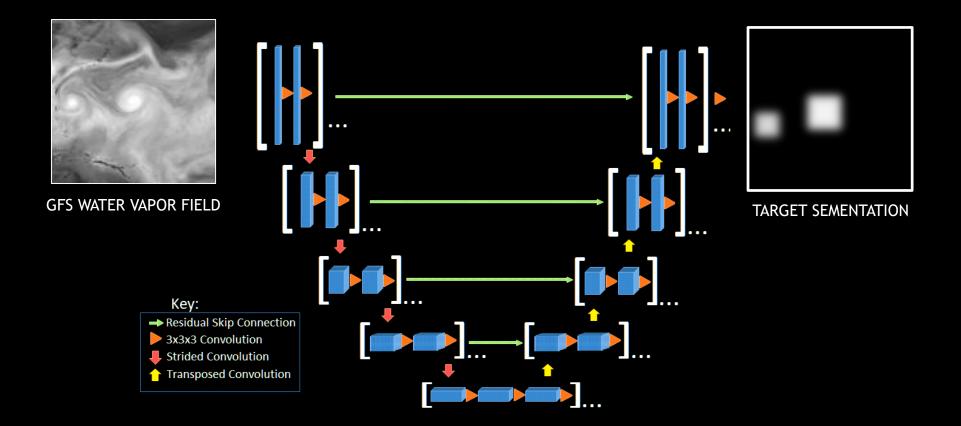
BUILD TROPICAL STORM DATASET FROM IBTRACS AND GFS

Extract positive and negative examples for supervised learning



USE A U-NET MODEL FOR SEGEMENTATION

Multi-scale Convolutional Neural Net for Image Segmentation



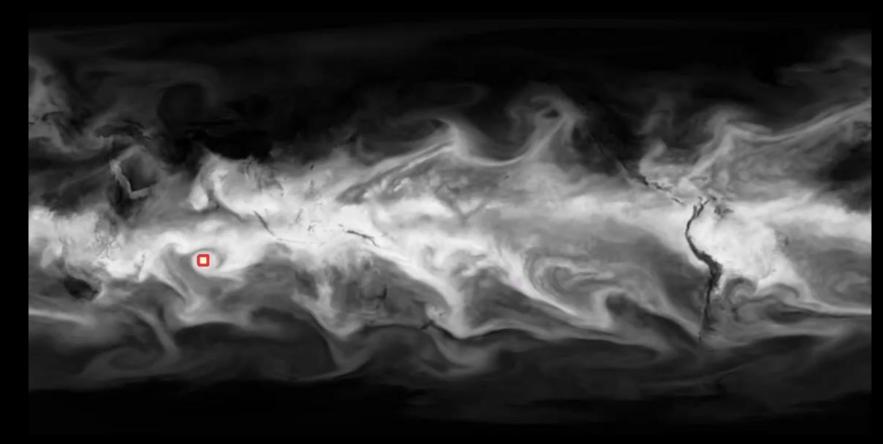
RESULTS: TROPICAL STORMS

NOAA ESRL Mark Govett Jebb Stewart Christina Bonfonti

NVIDIA David Hall

SOURCE GFS Water Vapor

TARGET IBTRACS Storm Locations



Ground Truth Prediction

RESULTS: TROPICAL STORMS GOES SATELLITE OBSERVATIONS UPPER-TROPOSPHERIC

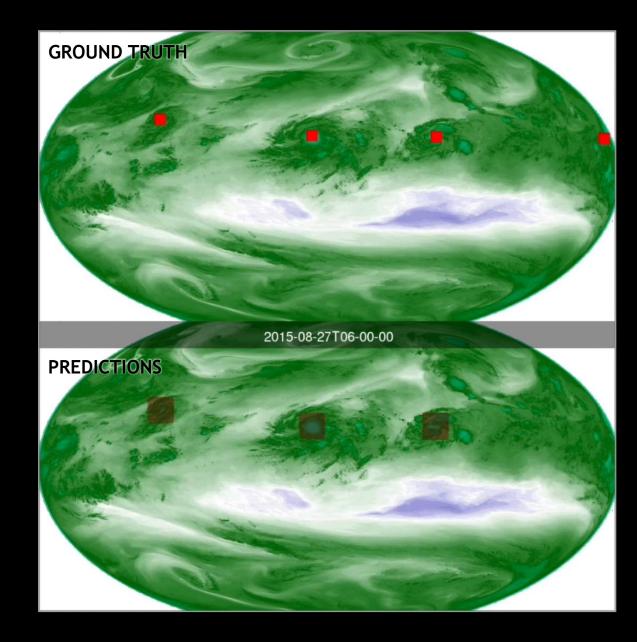
NOAA ESRL

Mark Govett Jebb Stewart Christina Bonfonti

NVIDIA David Hall

SOURCE GOES 12-15 Upper Tropospheric Water Vapor Band

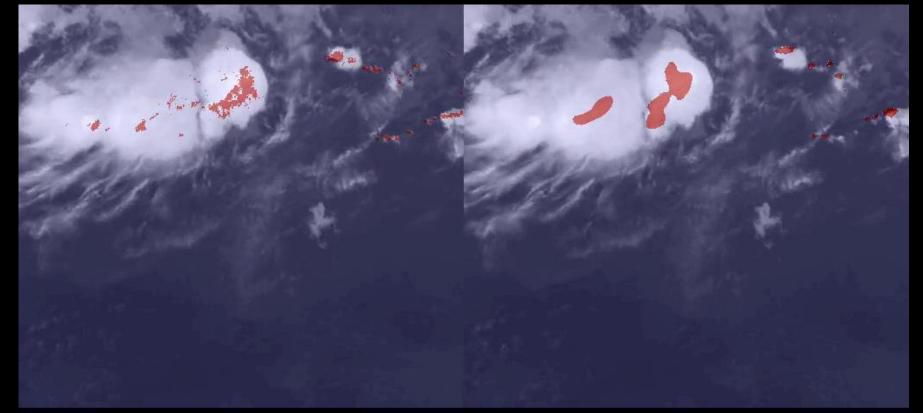
TARGET IBTRACS Storm Locations



RESULTS: CONVECTION INITIATION

GROUND TRUTH

PREDICTION



2018-05-20T13:30:00

NOAA ESRL Mark Govett Jebb Stewart Christina Bonfonti

NVIDIA David Hall

SOURCE Himawari8 band 8,13

TARGET

Composite Radar Reflectivity DBZ>35

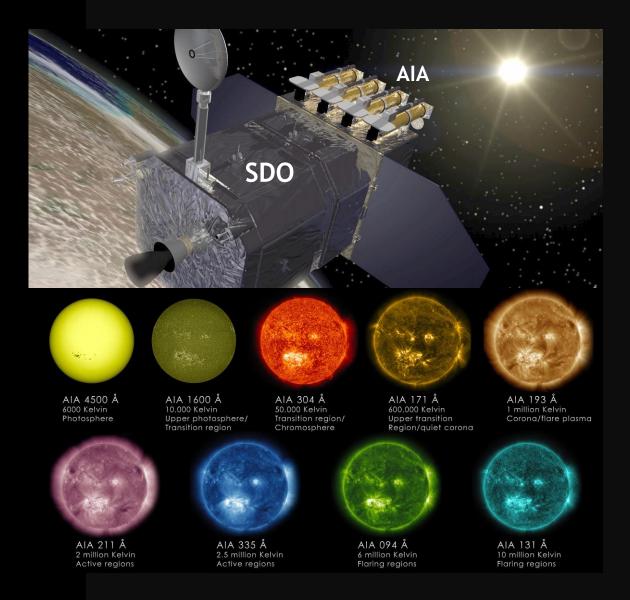
SPACE-WEATHER DETECTION

NASA GODDARD ALTAMIRA & NVIDIA

Feature detection can be applied to detect features on the Sun and other astrophysical bodies. In particular, we can apply AI to solar flares and coronal mass ejections in order to predict the influx of highly charged particles on Earth's atmosphere. ACTIVE REGIONS

SOLAR DYNAMICS OBSERVATORY

- 1.5 TB Data / Day
- Operational Since 2010
- AIA: 10 Wavelength Channels
- 150M Images To Be Labelled
- 30k Images Labelled so far
- Coronal Holes
- Active Regions
- Sunspots
- Solar Flares
- Coronal Mass Ejections
- Filaments



(AIA 193Å) BCE loss = 0.01247

RESULTS: CORONAL HOLES

NASA Goddard

Michale Kirk, Barbara Thompson, Jack Ireland, Raphael Attie

NVIDIA

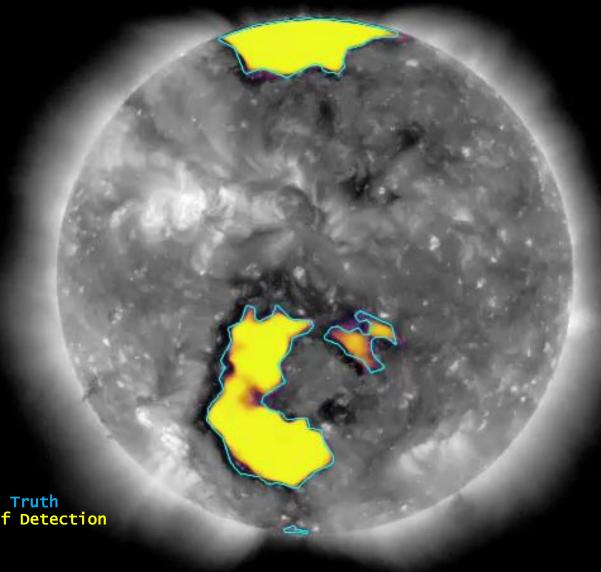
David Hall

Altamira Matt Penn, James Stockton,

SOURCE Solar Dynamics Observatory AIA Imager

TARGET Hand-crafted detection algorithm

Ground Truth **Prob of Detection**



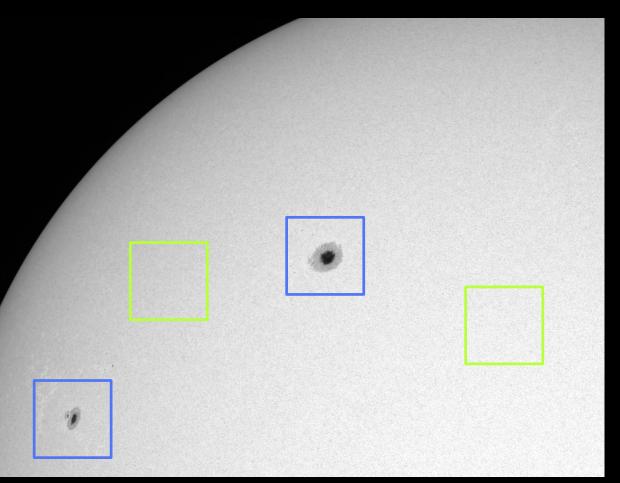
SUNSPOT PREDICTIONS Highly imbalanced dataset. Needs special care.

Predicts all Os unless special care is taken

- Super-sample minority class
- Under-sample majority class
- Use focal loss

Select small crops from high-res imagery Pos : crops w/large fraction sunspot pixels Neg : randomly selected crops

Train conv net on small crops only Predict on full-resolution images



(AIA 193Å) BCE loss = 0.00027

RESULTS: SUNSPOTS

NASA Goddard Michale Kirk, Barbara Thompson, Jack Ireland, Raphael Attie

NVIDIA

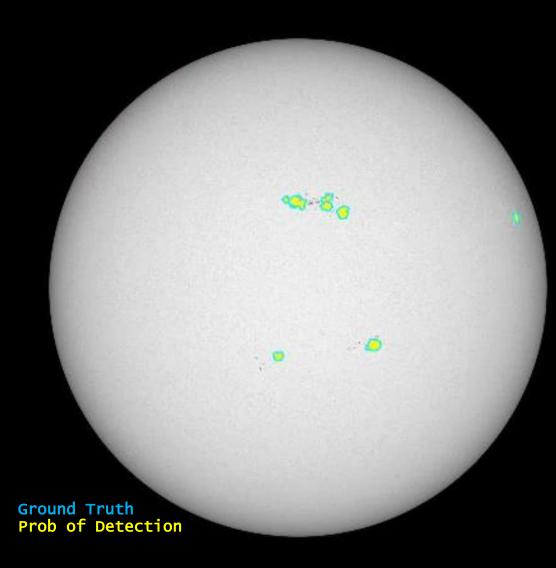
David Hall

Altamira Matt Penn, James Stockton,

SOURCE

Solar Dynamics Observatory AIA Imager

TARGET Hand-crafted detection algorithm



(AIA 193Å) BCE loss = 0.03847

RESULTS: ACTIVE REGIONS

NASA Goddard

Michale Kirk, Barbara Thompson, Jack Ireland, Raphael Attie

NVIDIA

David Hall

Altamira Matt Penn, James Stockton,

SOURCE Solar Dynamics Observatory AIA Imager

TARGET Hand-crafted detection algorithm

Ground Truth Prob of Detection EXAMPLE APPLICATIONS: GENERATIVE MODELS

CONDITIONAL GANS FOR DATA ASSIMILATION

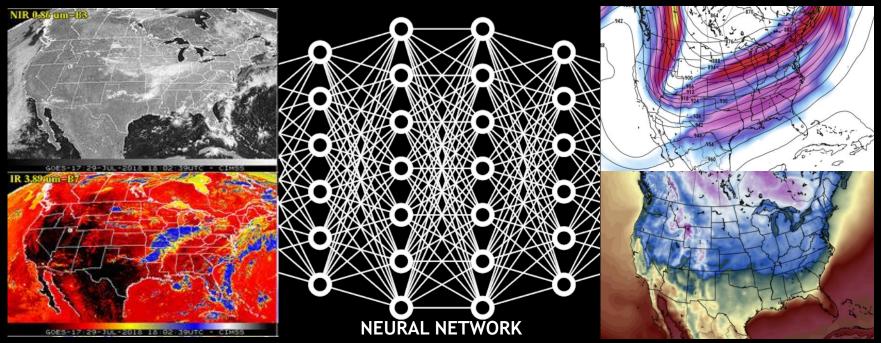
NVIDIA

In cases where a 1-1 map is not possible, we can employ conditional generative adversarial networks in order to generate a single, physically plausible state from a distribution of possible states. This prevents the dilution or blurring caused by underconstrained output.

FORWARD AND INVERSE OPERATOR APPROXIMATION

SATELLITE RADIANCES

MODEL VARIABLES



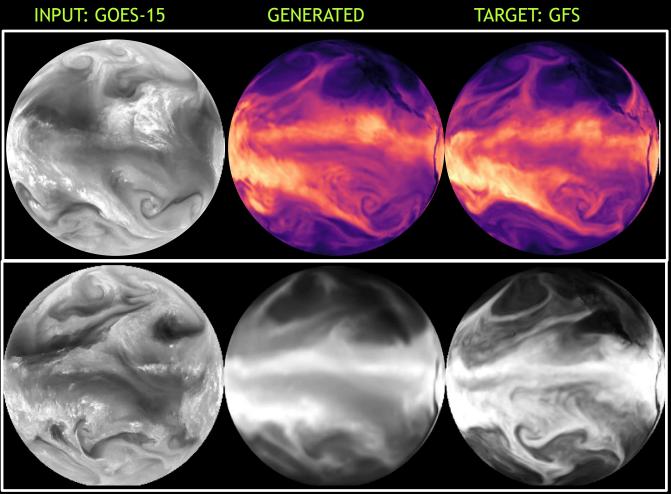
CONDITIONAL GAN

RESULTS: SATELLITE TO MODEL CONDITIONAL GAN

NVIDIA David Hall

SOURCE GOES-15 Band 3 GFS Water Vapor

TARGET GFS Water Vapor GOES-15 Band 3



INPUT: GOES-15 GENERATED TARGET: GFS REGRESSION MODEL

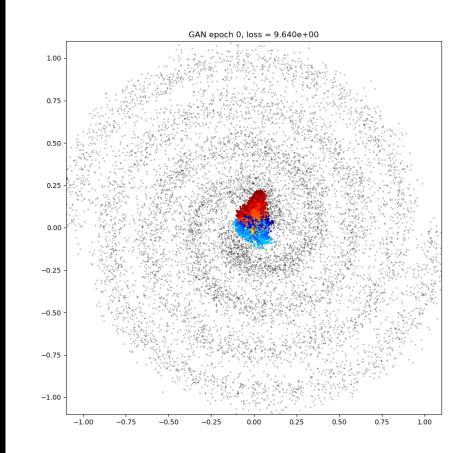
"REGRESS THEN GAN"

TOY PROBLEM: TRAINING A 2D CONDITIONAL GAN

NVIDIA David Hall

SOURCE 1d parametric coordinate

TARGET Synthetic point distribution



RESULTS: CGAN CLOUD GENERATION

NASA Goddard

Tianle Yuan Hua Song Victor Schmidt Kris Sankaran

MILA Yoshua Bengio

NVIDIA David Hall

SOURCE Hadcrut4, cmip, 20cr

TARGET Hadcrut4, cmip, 20cr

EXAMPLE APPLICATIONS: DATA ENHANCEMENT

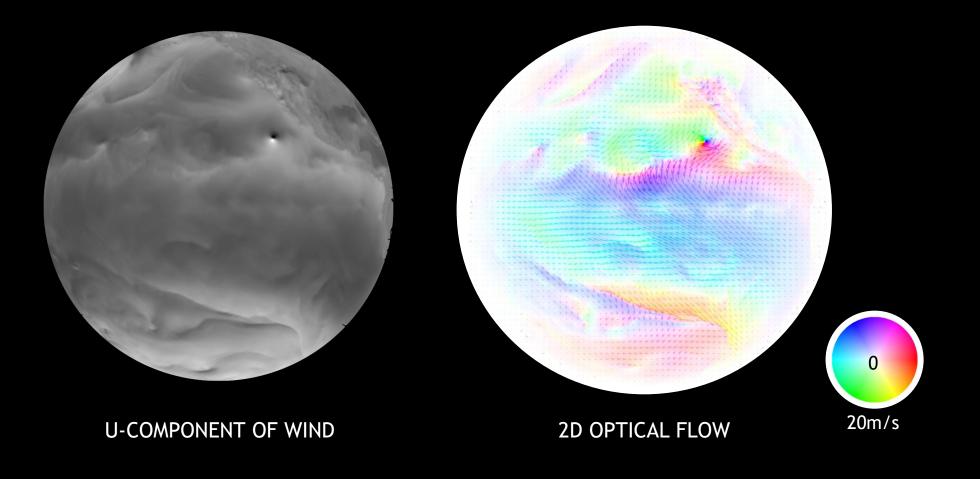
ENHANCEMENT AND REPAIR OF SATELLITE & MODEL DATA

NOAA STAR Freie Universitat Berlin NVIDIA

Using NVIDIA's super-slow motion and inpainting techniques, we can repair missing or damaged pixels in satellite and model data, or create high quality interpolations of the data in space and time.

NVIDIA SUPER SLOW-MOTION

USE DEEP LEARNING TO PREDICT OPTICAL FLOW

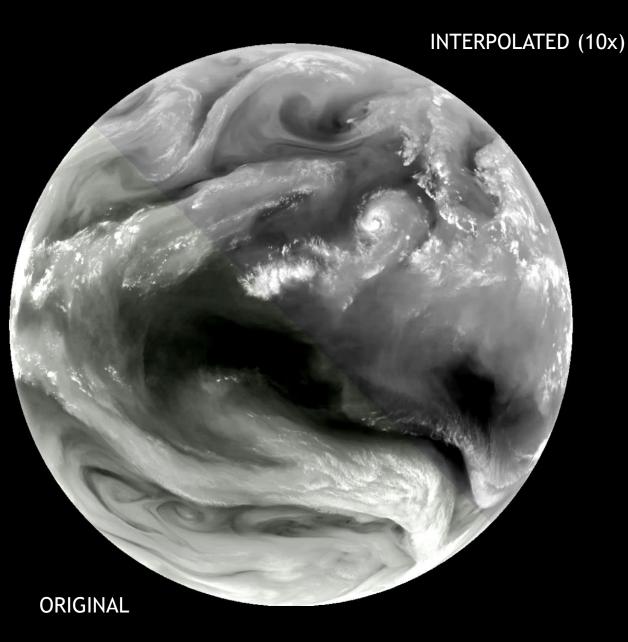


RESULTS: SLOW MOTION ADVECTION

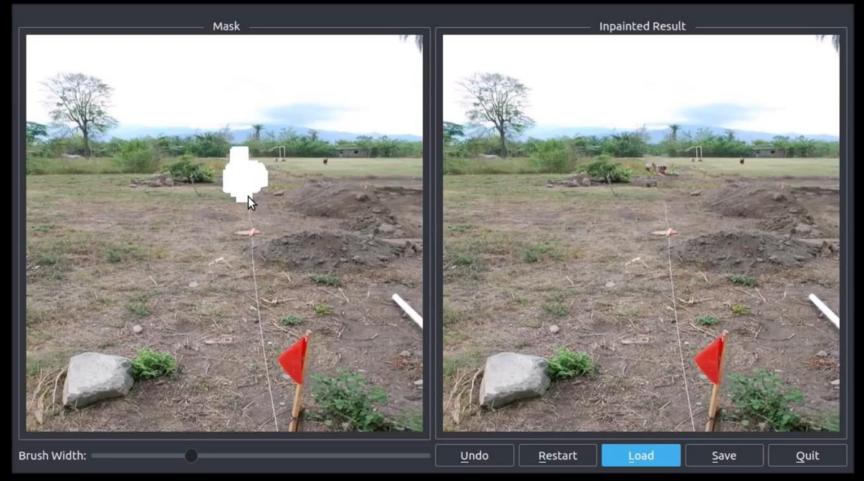
NVIDIA David Hall

SOURCE GOES-15 Band 3

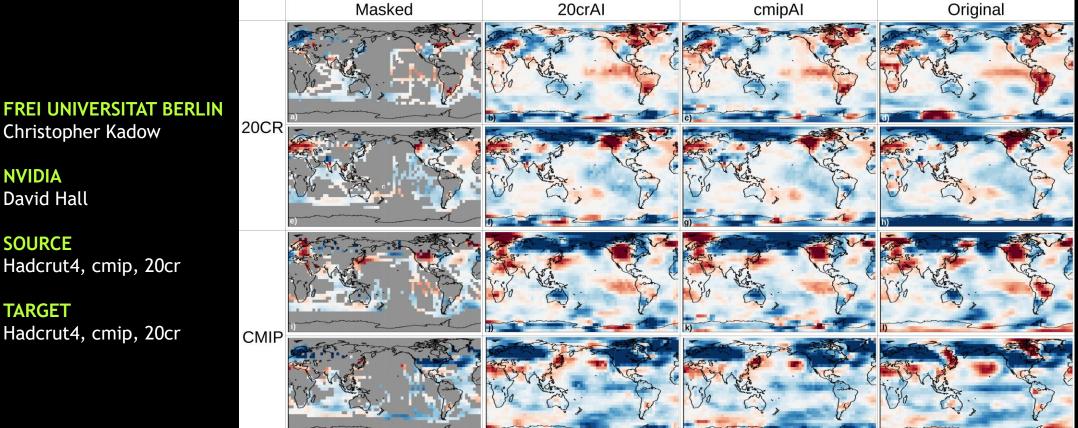
TARGET GFS u,v wind fields



IN-PAINTING Use partial-convolutions to fill in missing data



RESULTS: INPAINTING MISSING HADCRUT4 CLIMATE DATA



Christopher Kadow

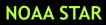
NVIDIA David Hall

SOURCE Hadcrut4, cmip, 20cr

TARGET

Hadcrut4, cmip, 20cr

INPAINTING MISSING GOES-17 OBSERVATIONS



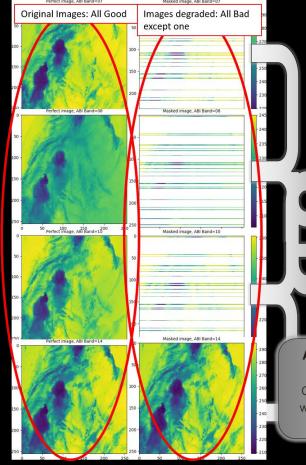
E. Maddy^(RTI)

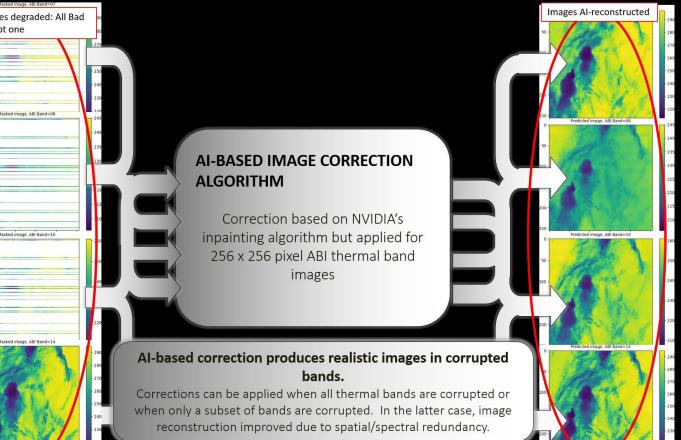
- N. Shahroudi (RTI)
- R. Hoffman^(UMD)
- T. Connor (AER)
- S. Upton^(AER)
- J. Ten Hoeve (NWS)

SOURCE

GOES-17

TARGET GOES-17





EXAMPLE APPLICATIONS: TIME-SERIES PREDICTION

STREAMFLOW PREDICTION UNDER CLIMATE CHANGE

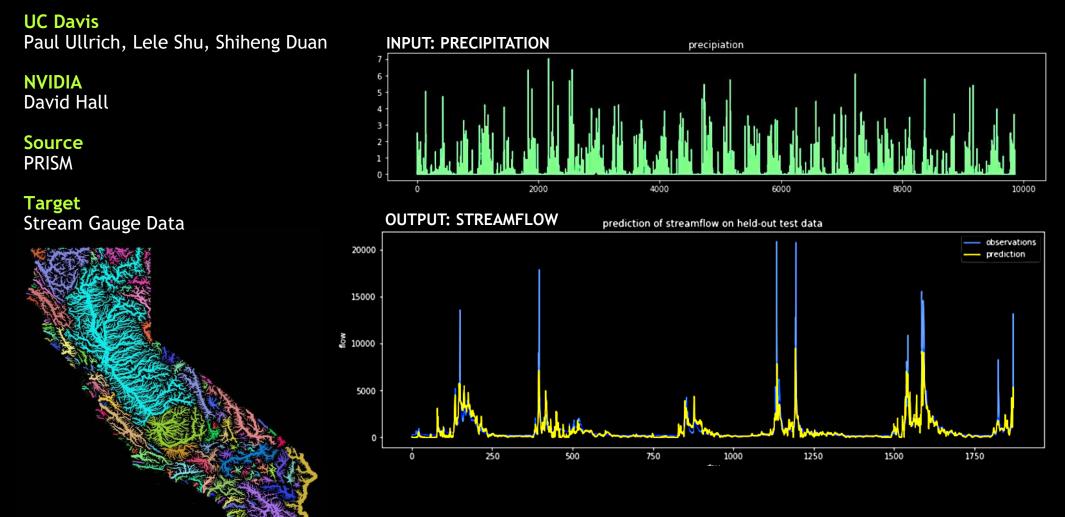
UC Davis, NVIDIA

Climate models are able to predict changes in precipitation, but how will this effect streamflow rates? To answer this question one can built a detailed physical model, or train a neural network to predict time series data. In this case, we find a simple network performs just as well.

GOES-16 CIRA GEO COLOR / GOES-15 RED BAND

STREAMFLOW FROM PRECIPITATION

Predicting streamflow probabilities under climate change



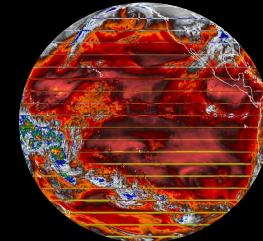
SUMMARY

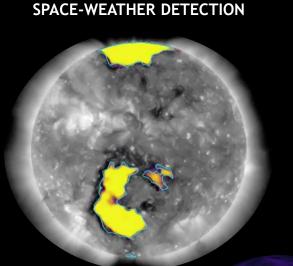
- SUPERVISED DEEP LEARNING IS POWERFUL, BUT NOT MYSTERIOUS
- A GENERALIZATION OF CURVE FITTING, IN HIGH DIMENSIONS
- A DIFFERENT WAY TO BUILD SOFTWARE (REVERSE-ENGINEERINGING FROM DATA)
- A GREAT WAY TO TAKE ADVANTAGE OF YOUR GPUS
- CAN DO SOME PRETTY AMAZING THINGS. (CAN'T BE DONE IN ANY OTHER WAY.)
- WILL BECOME A STANDARD PART OF THE NWP / CLIMATE TOOLBOX.

dhall@nvidia.com

SUMMARY

SLOW MOTION INTERPOLATIONINPAINTING FOR IMPUTING MISSINGVIA OPTICAL FLOW PREDICTIONHADCRUT4 AND GOES-17 DATA





UNETS FOR WEATHER AND

CONVOLUTIONS IN TIME FOR STREAMFLOW PREDICTION

CONDITIONAL GANS FOR DATA ASSIMILATION AND CLOUD GENERATION

dhall@nvidia.com

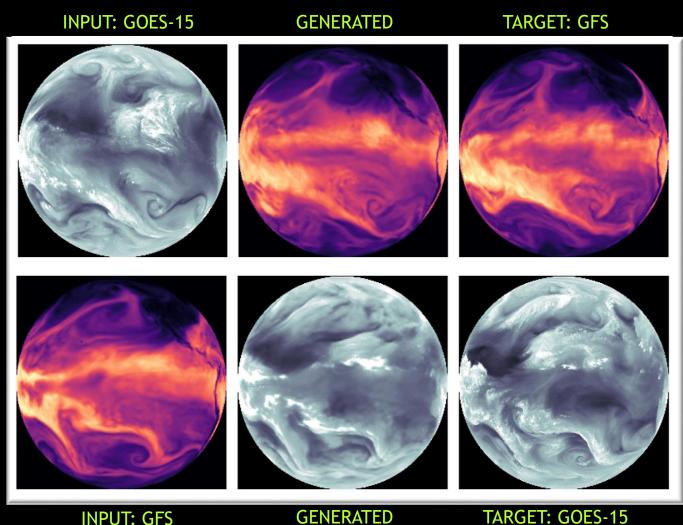
INVERSE OPERATOR

RESULTS: SATELLITE TO MODEL **CONDITIONAL GAN**

NVIDIA David Hall

SOURCE GOES-15 Band 3 **GFS Water Vapor**

TARGET **GFS Water Vapor** GOES-15 Band 3



INPUT: GFS

GENERATED FORWARD OPERATOR