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Motivation

It was the best of times. It was the worst of times.

• Numerical Weather Prediction model skill 

continues to increase

• Decision makers trust meteorologists more 

than ever

• Both serial and parallel processing limits are limiting 

the further scalability of existing model codes

• Weather and climate models will need a new design 

paradigm to realize higher resolution and complexity
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Goals

• Machine learning offers a computationally efficient, 
expressive, and scalable framework for representing 
complex physical processes in numerical models

• Problem: machine learning libraries are written in 
Python or C++, but numerical models are generally 
written in Fortran

• Goal: Evaluate how machine learning models 
perform physically and computationally at 
representing subgrid physical processes with two 
frameworks

• Surface Layer: machine learning parameterization 
trained from observations to minimize assumptions 
required by Monin-Obukhov similarity theory

• Microphysics: machine learning emulator trained on 
simulation data from a bin microphysics process is 
inserted into bulk microphysics scheme

https://www.pinterest.com/pin/260012578456645879/?lp=true

Esteemed parameterization with a complex past

Neural network emulator good enough to fool the guards?
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Motivation: Observed and Modeled Surface Layer

Observed Surface Layer Model Surface Layer

Lowest Model 

Level

Surface Layer 
Parameterization

Land Surface Model

PBL 

Scheme

Temperature, wind, 

humidity

Temperature, wind, 

humidity, pressure

Shortwave and longwave 

radiation

Soil temperature and moisture

Sensible and latent heat fluxes

SH LH

• Transfer of energy 

between the land surface 

and atmosphere is driven  

by radiation and sensible 

and latent heat fluxes

• Sensible and latent heat 

fluxes occur through 

unresolved turbulent 

eddies

• Processes currently 

represented in all 

numerical models through 

surface layer 

parameterization and land 

surface model

• Parameterization use 

assumptions of Monin-

Obukhov similarity theory
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Motivation: Surface Layer Methods

• MO similarity theory depends on empirical “stability 
functions” fit to data from short field campaigns

• Field campaign data likely does not capture the full 
range of possible flux-gradient relationships that can 
occur

• Therefore, we use two sites with multiyear 
observational records for both weather and flux data to 
train machine learning models

• Fit random forests and neural networks to each site to 
predict friction velocity and scale terms to calculate 
sensible heat flux and latent heat flux

• Avoiding explicit calculation of stability functions

Cabauw, Netherlands

KNMI Mast

213 m tower

Data from 2003-2017

Scoville, Idaho, USA

FDR Tower

Flux tower

Data from 2015-2017
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Input and Output Variables

Input Variables Heights (Idaho/Cabauw)

Potential Temperature Gradient (K) Skin to 10 m, 15 m/20 m

Mixing Ratio Gradient (g kg-1) Skin to 10 m, 20 m

Wind Speed (m s-1) 10 m, 15 m/20 m

Bulk Richardson number 10 m- 0 m

Moisture Availability (%) 5 cm/3 cm

Solar Zenith Angle (degrees) 0 m

Output equations

Predictands

u*=Friction velocity

θ*=Temperature scale

q*=Moisture scale

6Contact: dgagne@ucar.edu, @DJGagneDos

ML Procedure
1. Train ML models on observations

2. Plug in ML models to WRF in surface layer parameterization

3. Surface layer parameterization derives necessary outputs from ML 

predictions



Random Forest and Neural Network

Images from http://cs231n.github.io/convolutional-networks/
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Key hyperparameter: max_leaf_nodes=1024



Offline Results: Temperature and Moisture Scale
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Cross-Testing ML Models

9

R2 MAE

Idaho Test Dataset

Friction 

Velocity

Temperature 

Scale

Moisture 

Scale

Friction 

Velocity

Temperature 

Scale

Moisture 

Scale

MO Similarity 0.85 0.42 0.077 0.203

RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023

RF Trained on Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE

Cabauw Test Dataset

Friction 

Velocity

Temperature 

Scale

Moisture 

Scale

Friction 

Velocity

Temperature 

Scale

Moisture 

Scale

MO Similarity 0.90 0.61 0.18 0.115 0.062 0.135

RF Trained on Cabauw 0.93 0.82 0.73 0.031 0.030 0.055

RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

Results Courtesy Tyler McCandless
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Random Forest Incorporation into WRF

• Save scikit-learn decision trees from random forest 
to csv files

• Read csv files into Fortran array of decision tree 
derived types

• Random forest surface layer parameterization
– Calculate derived input variables for ML models

– Feed vectors of inputs to random forests for friction 
velocity, temperature scale, moisture scale

– Calculate fluxes, exchange coefficients and surface 
variables

• Test with WRF Single Column Model on idealized 
case study
– Using GABLS II constant forcing

– YSU Boundary Layer

– Slab Land Surface Model

type decision_tree

integer :: nodes

integer, allocatable :: node(:)

integer, allocatable :: feature(:)

real(kind=8), allocatable :: threshold(:)

real(kind=8), allocatable :: tvalue(:)

integer, allocatable :: children_left(:)

integer, allocatable :: children_right(:)

real(kind=8), allocatable :: impurity(:)

end type decision_tree

function decision_tree_predict(input_data_tree, tree) result(tree_prediction)

real(kind=8), intent(in) :: input_data_tree(:)

type(decision_tree), intent(in) :: tree

integer :: node

real(kind=8) :: tree_prediction

logical :: not_leaf

logical :: exceeds

node = 1

tree_prediction = -999

not_leaf = .TRUE.

do while (not_leaf)

if (tree%feature(node) == -2) then

tree_prediction = tree%tvalue(node)

not_leaf = .FALSE.

else

exceeds = input_data_tree(tree%feature(node) + 1) > tree%threshold(node)

if (exceeds) then

node = tree%children_right(node) + 1

else

node = tree%children_left(node) + 1

end if

end if

end do

end function decision_tree_predict
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CASES-II WRF Idealized Single Column Model Comparison 
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WRF Idealized Single Column Model Comparison 
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Surface Layer Takeaways

• Initial results appear promising 
but require further tuning and 
retraining to fix inconsistencies

• May need to ensure consistencies 
among friction velocity, 
temperature scale, and moisture 
scale

• We may need to modify land 
surface model and PBL scheme 
because of their dependencies on 
MO

Observed Surface Layer Model Surface Layer

Lowest Model 

Level

Surface Layer 
Parameterization

Land Surface Model

PBL 

Scheme

Temperature, wind, 

humidity

Temperature, wind, 

humidity, pressure

Shortwave and longwave 

radiation

Soil temperature and moisture

Sensible and latent heat fluxes

SH LH
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Motivation

Precipitation formation is a critical uncertainty for weather 

and climate models.

Different sizes of drops interact to evolve from small cloud 

drops to large precipitation drops.

Detailed codes (right) are too expensive for large scale 

models, so empirical approaches are used.

Let’s emulate one (or more)

Goal: put a detailed treatment into a global model and 

emulate it using ML techniques.

Good test of ML approaches: can they reproduce a 

complex process, but with simple inputs/outputs?

Superdroplet model output animation 

Credit: Daniel Rothenberg
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Bulk vs. Bin Microphysics

Bulk scheme (MG2 in CAM6):
Calculate warm rain formation processes 
with a semi-empirical particle size 
distribution (PSD) based on exponential fit 
to LES microphysics runs.

Bin Scheme (Tel Aviv University (TAU) in 
CAM6):
Divide particle sizes into bins and calculate 
evolution of each bin separately. Better 
representation of interactions but much 
more computationally expensive. 
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Cloud to Rain Processes

Cloud droplets grow into rain droplets 

through 3 processes:

Autoconversion: cloud droplets collide 

in a chain reaction to form rain drops

dqc/dt < 0, dqr/dt > 0

dNc/dt < 0, dNr/dt > 0

Rain Accretion: rain drops collide with 

cloud droplets

dqc/dt < 0, dqr/dt > 0

dNc/dt < 0, dNr/dt = 0

Self-Collection: rain drops collide with 

other raindrops

dqc/dt = 0, dqr/dt = 0

dNc/dt = 0, dNr/dt < 0
d: rain drop

c: cloud droplet

CCN: cloud condensation 

nuclei 
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Microphysics Emulator Procedure

1. Run CAM6 for 2 years with fixed forcing from other CESM components

2. Output global microphysics input and output fields every 25 hours

3. Filter and subsample data to find grid points with realistic amounts of 

cloud water

Inputs

Cloud water mixing ratio (qc)

Cloud water number concentration (Nc)

Rain water mixing ratio (qr)

Rain water number concentration (Nr)

Air density

Cloud Liquid Slope Parameter

Rain Water Slope Parameter

Rain Water Intercept Parameter

Cloud Fraction

Precipitation Fraction

Spectra shape for cloud liquid water

dqr/dt > 

0? 

dqr/dt

0

dNc/dt

< 0?

dNr/dt +,-

, or 0? 0

+dNr/dt

-dNr/dt

dqc/dt=-

dqr/dt

17

dNc/dt

< 0?

0
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Neural Network Settings

• 3 classifier networks, 4 regression networks

• 82,327 weights total (~16 jellyfish brains)

• Dense Neural Network Hyperparameters
– 4 layers

– 60 neurons per hidden layer

– 11,761 total weights

– Rectified Linear Unit (ReLU) activation functions

– Batch Size: 4096 examples

– Learning Rate: 1.0e-3

– L2 Norm Weight: 1.0e-4

– Training Period: 10 epochs

– Loss function: Mean squared error (regression), cross-
entropy (class)

Artistic rendering of neural 

network interface

Image from J. Fardell, 2001: Jeremiah Jellyfish Flies High
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Classifier Results

TAU QR 1 TAU QR  0 Total

NN QR 1 41.7% 0.7% 42.4%

NN QR 0 0.8% 56.8% 57.6%

Total 42.5% 57.5% 98.4%

TAU NC 1 TAU NC  0 Total

NN NC 1 52.9% 0.5% 53.4%

NN NC 0 0.2% 46.3% 46.5%

Total 53.1% 46.8% 99.3%

TAU NR -1 TAU NC  0 TAU NR 1 Total

NN NR -1 35% 0.0% 0.4% 35.4%

NN NR 0 0.1% 43.1% 0.3% 43.5%

NN NR 1 0.2% 0.5% 20.4% 21.1%

Total 35.3% 43.6% 21.1% 98.5%
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Microphysics 2D Histogram Results

Output R2 MAE Hellinger

dqr/dt 0.991 0.095 4.53e-4

dnc/dt 0.995 0.112 1.49e-3

dnr/dt < 0 0.995 0.081 6.04e-4

dnr/dt > 0 0.978 0.178 1.18e-3
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ML Integration with Numerical Models

• Problem: Atmospheric models are written in Fortran, 
but the ML model codes are written in Python

• Solution: Fortran neural network inference subroutine

• Subroutine Contents
– Calculate derived input variables

– Feed inputs into ML models

– Calculate diagnostics from ML output

• Advantages
– No outside library dependencies

– ML models can be switched out easily when more data are 
available

• Disadvantage
– More limited ML functionality/optimization compared with 

community ML models 

type Dense

integer :: input_size

integer :: output_size

real(kind=8), allocatable :: weights(:, :)

real(kind=8), allocatable :: bias(:)

character(len=10) :: activation

end type Dense
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CAM Run with Machine Learning Emulator

• ML runs at roughly 

same speed as 

CAM with MG2

• CAM with TAU is 3x 

slower than CAM 

with MG2

• CAM with ML 

emulator and 

training climate runs 

for 9 years

• ML emulator and 

+4C SST: 4.5 years 

before blowup

• ML emulator and 

preindustrial 

aerosols: 18 months 

before blowup

Contact: dgagne@ucar.edu, @DJGagneDos



CAM Run Distribution Comparisons
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Partial Dependence Plots

Temperature Dewpoint Pressure

280 10 986

280 14 1014

280 2 992

280 25 1025

280 6 950

1. Set all instances for one variable 
in a dataset to a single value

Machine Learning 
or Physical Model

2. Feed fixed data 
through model

Mean 
Prediction

3. Calculate mean 
prediction for 

fixed value

4. Repeat process for range of input values
Example: Temperature=[20, 22, ..., 40]

Goal: understand average sensitivities of input fields while accounting 

for nonlinear interactions within model
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Microphysics Emulator Partial Dependence (ExpandedRange)
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Outside the range of the training data (red) the neural network extrapolates mostly linearly 



Systematic Biases with Emulators

Possible that ML emulator has less variance than the input data. 

General issue with many ML applications.

For a non-linear process, variability will yield a different average process rate than the mean…

dLWP

(process rate)

ML Emulator

State
Variability

Average of higher variability (Perfect 

Model) has larger process rate 

(dLWP/dT) than smoother Emulator, 

hence more LWP in the mean. 
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Python to Fortran Discussion

CFFI 

(Noah Brenowitz* approach)

Fortran Inference Modules

(My Approach)

Fortran API to C++ Deep 

Learning Library

Pros: 

Call Python from Fortran

Passes data quickly 

Don’t have to run ML models 

on Fortran side

Potential for online training

Pros:

Train in Python; run in Fortran

Runs really fast

Supports dense neural 

networks of arbitrary depth

Pros:

Can access networks of 

arbitrary complexity

Potential for online training

Bypass Python bottleneck

Cons:

Requires running separate 

Python runtime along with 

Fortran model

Python side may be a 

bottleneck for running at scale

Cons:

Does not support 

convolutional neural networks 

or more complex architectures

No online training

Cons:

Does not exist yet

Would require writing and 

maintaining API to make all 

library features accessible 

from Fortran

*https://www.noahbrenowitz.com/post/calling-fortran-from-python/

https://www.noahbrenowitz.com/post/calling-fortran-from-python/


Summary

• The machine learning surface layer parameterization improves on Monin-Obukhov
similarity theory in the calculation of sensible and latent heat fluxes based on 
comparisons with observations.

• The ML surface layer parameterization can recreate the diurnal cycle of the boundary 
layer but currently struggles with the transition from stable to unstable conditions.

• The ML bin microphysics emulator accurately captures when the autoconversion
process is triggered and provides an unbiased estimate of the magnitudes of the 
tendencies.

• The ML bin emulator CAM run reproduces a similar climate to the original run with the 
bin scheme in place
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