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Topics

● Brief update on Cray in the Earth Sciences

● Emerging Data Analysis technologies

● Enabling new data analysis environments

● New analysis techniques
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Cray Growth in Weather, Climate and Oceanography
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Flexible, scalable analysis environments

● Challenges:
● Data Gravity

● Portability

● Ease of Use

● Solution: 
● Enable scalable, flexible, user-

friendly data analysis leveraging 
existing infrastructure
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Urika-XC make Analytics and Graph “first class” 
citizens on XC Series

Copyright 2017 Cray Inc.

Python Open 
Data 

Science

Spark Big 
Data 

Analytics

Large-Scale 
Graph 

Discovery

Production Supercomputing

▪ Weather Forecasting

▪ Seismic Imaging

▪ Manufacturing CAE

▪ Data Preparation

▪ Analysis

▪ Visualization

▪ Machine Learning

▪ Deep Learning

▪ Cancer Cell 

Morphology

▪ Fraud and 

Insider 

Threat 

DetectionScientific Supercomputing

▪Climate Science

▪Chemistry & Materials 

Science

Expanding 
to Analytics 
and Open 

Data 
Science

Simulation

5



Example

● Met Office “JADE” Data Analysis platform
● Goal to replace powerful desktops with analysis environment accessed via web browser

● Leverages :
● DASK parallel python engine

● Jupyter interactive notebooks

● IRIS Python Library for Meteorology and Climatology

● Developed/prototyped on AWS

● Desirable to support on Cray XC supercomputers
● First landing-point for data, access to highest I/O performance

● Leverage Urika-XC software
● Support for Python, DASK, Jupyter, integrated with XC scheduler 

● Containerized for easy, repeatable deployment

● Collaboration with Met Office Informatics Lab 
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Example Use-cases

● Persist recent ensemble data to allow interactive query/analysis
● 50GB from Met Office Global & Regional Ensemble Prediction System

● Lazily load data of interest  

● Examine Wind-Speeds
● Select 10m wind speeds  (x + y) for each member

● Calculate real wind speed 

● Average across ensemble members

● Plot winds for forecast timesteps

● Create animation

● Compare ensemble mean to single member
● Repeat for precipitation/rainfall
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Jupyter Notebook
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St Jude Storm
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Opportunities for Machine/Deep Learning in 
Weather/Climate

● Almost the opposite of a physics/dynamics based model
● Arduous to train, but comparatively quick to run

● Data Consumer vs Data Producer

● Use-cases likely to be complementary

● Some ideas:
● Rapid classifiers or predictors for radar/observations

● Pattern recognition in model outputs

● Infilling/smoothing model outputs

● Replacements for expensive parameterizations
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Sources: 

https://www.hpcwire.com/2017/08/28/nersc-scales-deep-learning15-pflops/

https://arxiv.org/abs/1708.05256

https://www.hpcwire.com/2017/08/28/nersc-scales-deep-learning15-pflops/
https://arxiv.org/abs/1708.05256


DL-driven Nowcasting

● Goals:

● Investigate the utility of Deep Learning 

for  very short term (0-1 hour) 

precipitation forecasts

● Gain insights into the full deep learning 

workflow
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Neural Network Architecture

● Recurrent Neural Network
● Recurrent connection and mechanism for retaining state.

● Extracts temporal relationships

● Convolution Long Short-Term Memory (ConvLSTM)
● RNN with defined cell-state representing encoded version of sequential history

● Cell-State is updated through “gating functions” that control information retention, loss and acquisition

● Ability to retain and apply long-term dependencies of a sequence

● Nowcasting is a sequence to sequence problem
● Input: Sequence of radar images leading up to the current time

● Output: Sequence of predicted radar images arbitrarily far in the future

● Solution: Encoder-Decoder Networks
● Encoder digests the input sequence and produces a single tensor representation

● This tensor is used to initialize the decoder

● Decoder takes previous images as input and produces predictions of the next image.
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Encoder Decoder using Convolution LSTM 
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Data Pipeline
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ETL Pipeline
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Data Collection

• Historical Radar Data 

(NETCDF) 

• Geographical Region 

(Eg:- Seattle)

• Days with over 0.1 inches 

of precipitation, info from 

NOAA – NCDC

• Radar scans every 5-10 

minutes throughout the 

day

Transformation

• Raw radial data structure 

converted to evenly 

spaced Cartesian grid 

(Tensors with float 32)

• Resolution scaling and 

clipping

• Configure dimensionality

• Sequencing

• 2 channels –

Reflectivity, Velocity

• Uses Py-ART package

Sampling

• Time-series 

• Inputs and 

Labels

• Random 

sampling

BigDL

Framework

• Apache Spark on 

Urika-GX

• Implemented in 

Jupyter notebooks 

and Python
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Processing Times
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● Hardware: Urika-GX 

● Software: PySpark, Jupyter

Notebooks, PyART

● Raw Dataset Size: 938GB

● Processed Dataset Size: 101GB

● Number of radar files: 111,571

● Number of Days: 467

● Average Download Speed: 

20MB/s
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Process Wall Time

Download from S3 13:31:00

Preprocess – 128 

cores

07:46:18

Preprocess – 256 

cores

04:36:30

Preprocess – 512 

cores

03:58:56



Training Times

● CS-Storm with 

NVIDIA Tesla P100 

GPUs

● 32 sample per 

device per batch

● Framework: 

Tensorflow
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GPU

Count

Batch-

size

Time Per 

10 

Epochs

Sample

/Sec

Final 

Accuracy 

(MAE)

1 32 8:47:38 29 0.0192

4 128 2:41:13 88

(3.0x)

0.0185

8 256 1:41:13 142

(4.9x)

0.0185
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Early Results – Mean Absolute Error
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Early Results – Skill scores

● FAR: False Alarm 

Rate – lower is 

better

● CSI: Critical 

Success Index –

igher is better

● POD: Probability of 

Detection – higher 

is better
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Actual Predictions
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Future Converged Architecture

Bulk StorageCache, Metadata & 
Data Movement

Automated 

Data 

Movement
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Thanks for your attention!

Phil Brown
philipb@cray.com


