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Topics
e Brief update on Cray in the Earth Sciences

e Emerging Data Analysis technologies
e Enabling new data analysis environments
e New analysis techniques
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Cray Growth in Weather, Climate and Oceanography R4S
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Flexible, scalable analysis environments CRANY

e Challenges:
e Data Gravity
e Portability
e Ease of Use

e Solution:

e Enable scalable, flexible, user-
friendly data analysis leveraging
existing infrastructure
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Urika-XC make Analytics and Graph “first class”
citizens on XC Series

Python Open

Spark Big
Data

Large-Scale
Graph
Discovery

Simulation Data
Science

Analytics

Production Supercomputing = Data Preparation = Cancer Cell
= Weather Forecasting = Analysis Morphology
= Seismic Imaging = Visualization = Fraud and
= Manufacturing CAE = Machine Learning Insider

= Deep Learning Threat
Scientific Supercomputing Detection

= Climate Science
= Chemistry & Materials
Science
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Example

Met Office “JADE” Data Analysis platform

e Goal to replace powerful desktops with analysis environment accessed via web browser
e Leverages:

e DASK parallel python engine

e Jupyter interactive notebooks

e IRIS Python Library for Meteorology and Climatology
e Developed/prototyped on AWS

Desirable to support on Cray XC supercomputers
e First landing-point for data, access to highest I/O performance

Leverage Urika-XC software
e Support for Python, DASK, Jupyter, integrated with XC scheduler
e Containerized for easy, repeatable deployment

Collaboration with Met Office Informatics Lab
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Example Use-cases cRANY
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e Persist recent ensemble data to allow interactive query/analysis
e 50GB from Met Office Global & Regional Ensemble Prediction System
e Lazily load data of interest

\
°

e Examine Wind-Speeds

Select 10m wind speeds (x +y) for each member
Calculate real wind speed

Average across ensemble members

Plot winds for forecast timesteps

Create animation

e Compare ensemble mean to single member
e Repeat for precipitation/rainfall
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Jupyter Notebook cRas |
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Precip Analysis for Oct 2013 Storm - Use Ensemble Mean

In [4]: # Create directory for output images.
ds_name = 'megreps-uk-2013-oct’
image_out_dir = analysis_dir + ds_name +
os.makedirs(image_out_dir, exist_ok=True)

-precip-es-mean’

global forecast_cutoff
forecast_cutoff = 6

# The foldby function results in a single partition. We need to use the cluster so create a new bag.
precip_data = extract_precip_dask_bag(ds_name, merge_and_collapse)

In [5]: list(precip_data)

out[5]: [(datetime.datetime(2013, 1@, 29, @, 45),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 18, 30, 9, 50),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 10, 28, 6, @),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 10, 28, 3, 20),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 1@, 28, 28, 55),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 18, 26, 23, 35),
[<iris 'Cube' of stratiform_rainfall_rate / (kg m-2 d-1) (grid_latitude: 548; grid_longitude: 421)>]),
(datetime.datetime(2013, 10, 26, 20, 10),



St Jude Storm

Windspeed at: 2013-10-28 02:00:00 N

25 37 49 61 73 85
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Windspeed at: 2013-10-26 04:00:00

24 36 48 ' 60 72 84 96
km/hr

Copyright 2017 Cray Inc.

L g
(Y \
° \
\



91

Rainfall rate at: 2013-10-26 03:10:00

181

271

361 451 541 631 721 811
kg m-2 d-1
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Opportunities for Machine/Deep Learning in i
Weather/Climate ==A:Y~

S \
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e Almost the opposite of a physics/dynamics based model
e Arduous to train, but comparatively quick to run
e Data Consumer vs Data Producer

e Use-cases likely to be complementary

e Some ideas:
e Rapid classifiers or predictors for radar/observations
e Pattern recognition in model outputs
e Infilling/smoothing model outputs
e Replacements for expensive parameterizations
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NERSC s
Petaﬂops
By Rob Farper

August 28, 2017

Currently the most Scalable deep-leammg Implementation in the worlg. The
work described in the baper, Deep Leam/ng at 15pF- Superviseq and Semj.-
Superviseq Classification for Scientific Data’, reported that 5 Cray Xc4q
System with g configuration of 9,600 self-hosted 1.4GHz Intey Xeon Phj

Processor 7250 baseq nodes achieveq a peak rate between 11 73 and 15.07
petaflops (single-precision) and an average Sustained Performance of 1141+t

The group utilized an amalgamation of Intel Caffe, Inte| Math Kernel Library

(Intel MKL), and Intel Machine Leaming Scaling Library (Inte] MLSL) Software
to achieve this Scalability ang performance 2

- -learning15-pflops/
Sources: hpcwire.com/2017/08/28/nersc-scales-deep-le
https://www.hpcwire.

https://arxiv.org/abs/1708.05256
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DL-driven Nowcasting

e Goals:

e Investigate the utility of Deep Learning
for very short term (0-1 hour)
precipitation forecasts

e Gain insights into the full deep learning
workflow
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Convolutional LSTM Network: A Machine Learning
Approach for Precipitation Nowcasting

Xingjian Shi  Zhourong Chen Hao Wang  Dit-Yan Yeung
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
{xshiab, zchenbb, hwangaz, dyyeung}@cse.ust .hk
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Hong Kong, China
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Abstract

The goal of precipitation nowcasting is to predict the future rainfall intensity in a
local region over a relatively short period of time. Very few previous studies have
examined this crucial and challenging weather forecasting problem from the ma-
chine learning perspective. In this paper, we ipitati ing
as a spati ing problem in which both the inout and the




Neural Network Architecture CRANY |

Recurrent Neural Network ] (}? ? @? q%

e Recurrent connection and mechanism for retaining state. A = Al A A - A

e Extracts temporal relationships ng (Xg é é é

Convolution Long Short-Term Memory (ConvLSTM)
e RNN with defined cell-state representing encoded version of sequential history
e Cell-State is updated through “gating functions” that control information retention, loss and acquisition
e Ability to retain and apply long-term dependencies of a sequence

Nowcasting is a sequence to sequence problem QarEpuILE:
e Input: Sequence of radar images leading up to the current time Tdecode
o Output: Sequence of predicted radar images arbitrarily far in the future hidden -
Tencode
Solution: Encoder-Decoder Networks input -

e Encoder digests the input sequence and produces a single tensor representation
e This tensor is used to initialize the decoder

e Decoder takes previous images as input and produces predictions of the next image.
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Encoder Decoder using Convolution LSTM c=Ras
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Data Pipeline

L.
* L. Load Radar Fil =
. LOoa adar rles | .
Amazon S3 ~—
NOAA Bucket Cra)@
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2. Parallelize Radar files
to Spark

4

4. Save Tensor

\¥

Spr : Cray® Urika-GX™:
3. Generate 3D Projection of
Raw Radar Data

Py-ART
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ETL Pipeline

/Data Collection\

Historical Radar Data
(NETCDF)

Geographical Region
(Eg:- Seattle)

Days with over 0.1 inches
of precipitation, info from
NOAA — NCDC

Radar scans every 5-10
minutes throughout the

day /

( Transformation \

Raw radial data structure
converted to evenly
spaced Cartesian grid
(Tensors with float 32)

:nAY: |
Q
Q $ \
(Samplinq\
intel) BigDL \

* Time-series

» - Inputs and
Resolution scaling and Labels g
clipping *+ Random
Configure dimensionality sampling
Sequencing
2 channels — \_ "/
Reflectivity, Velocity
Uses Py-ART package j

Framework

GAGHGRNGH)

Apache Spark on
Urika-GX
Implemented in
Jupyter notebooks
and Python



Processing Times

Process Wall Time

cores

Download from S3 | 13:31:00
Preprocess — 128 |07:46:18
cores
Preprocess — 256 | 04:36:30
cores
Preprocess — 512 | 03:58:56

Hardware: Urika-GX

Software: PySpark, Jupyter \
Notebooks, PYyART

Raw Dataset Size: 938GB
Processed Dataset Size: 101GB
Number of radar files: 111,571
Number of Days: 467

Average Download Speed.:
20MB/s



Training Times

CS-Storm with - Time Per Sample Final
10 /Sec Accuracy

NVIDIA Tesla P100 Epochs (MAE)
GPUs 1 32 8:47:38 |29 0.0192
32 sample per
device per batch 4 128 2:41:13 |88 0.0185
Framework: (3.0%)
Tensorflow 8 256 1:41:13 | 142 0.0185

(4.9x)




Early Results — Mean Absolute Error AN

ConvLSTM vs Persistence, KTLH station \
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NN = ConvLSTM P = Persistence
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Early Results — Skill scores CRANY
ConvLSTM vs Persistence, KTLH station &
S \
0.8 \
e FAR: False Alarm o~
Rate — lower is 0.6 - — |
better 0-5
L. 0.4
e CSI: Critical 0
Success Index - ,, __— B
Igher is better 0.1
_ - 0
¢ POD F.)rObabl_Ilty Of T+10 T+20 T+30 T+40 T+50 T+60
Detection — higher —NN-FAR —NN-CSI —NN-POD
IS better —P-FAR —P-CS| P-POD

NN = ConvLSTM P = Persistence
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Actual

Predictions

Recorded Reflectivity

Predicted Reflectivity

t=6
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Future Converged Architecture CRANY
\)
/ Converged Compute & Analysis System \
. “ Machi N Oth h
. . . achine er
Massively Single/Lightly Batch & SenElies Learning & Distributed Memory &
Threaded Pre- . hosted
Parallel Interactive . Complex In-Memory Compute-
. . /Post- . .. analysis .
Simulations . Visualization Network + Databases Intensive
Processing workflows .
.. Analysis Tasks
L ric — )
\ Flexible 10 Acceleration L Data Services j
( Parallel Storage
\_ Automateo
Data
4 = Vel Archival Storage
Cache, Metadata & Bulk Storage
Data Movement
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Thanks for your attention!




