A performance portable implementation of HOMME via the Kokkos programming model

L.Bertagna, M.Deakin, O.Guba, D.Sunderland, $\overline{\text { A.Bradley, I.Tezaur, M.Taylor, A.Salinger }}$

Sandia National Laboratories, Albuquerque, NM
September 18th, 2018

1 The E3SM and CMDV projects

2 Kokkos and HOMME

3 From HOMME to HOMMEXX

4 Results

Energy Exascale Earth System Model (E³SM)

What is E3SM?

- DOE effort for a high resolution earth model.
- Branched from Community Earth System Model (CESM) in 2014.
- Modular library, with several components: atmosphere dynamics/physics, land, land-ice, ocean, sea-ice, biogeochemistry, ...
- All component can run with variable-resolution, unstructured grids.
- Mostly written in Fortran 90.
- Broad variety of time and space scales.
- 2018: E3SM version 1 is released in April.

(CMDV)

Project goal is to improve

- trustworthiness of the model for decision support,
- code agility for adapting to exascale architectures,
- productivity through leveraging of cutting-edge computational science.

(CMDV)

Project goal is to improve

- trustworthiness of the model for decision support,
- code agility for adapting to exascale architectures,
- productivity through leveraging of cutting-edge computational science.

Coding challenge: have a single code base, performant on a variety of architectures, and cabable of rapidly adapting to new ones.

- Task: study the feasibility of using Kokkos (a library for on-node parallelism, more on it later) to achieve a single code base which is performant on a variety of architectures (CPU, MIC, GPU).
- Path: convert a component of E3SM, namely the atmosphere component HOMME (more on that later), to C++, using Kokkos.
- Metrics: correctness (bit-for-bit with original HOMME), and performance (on par with original HOMME on CPU/MIC).
- Developed at Sandia National Labs, written in C ++ (with $\mathrm{C}++11$ required).
- Provides templated constructs for on-node parallel execution: execution space (host vs device), execution policy (range vs team), parallel operation (for, scan, reduce).
- Provides template abstraction for a multidimensional array: data type, memory space (host, device, UVM), layout (left, right, ...), memory access/handling (atomic, unmanaged, ...).
- Supports several back-ends: Serial, OpenMP, Pthreads, Cuda,
- Available at http://github.com/kokkos/kokkos.

(HOMME)

- Component of E3SM (and CESM) for dynamics and transport in the atmosphere.
- Accounts for $20-25 \%$ of total run time of typical fully-coupled simulation.
- Highly optimized for MPI and OpenMP parallelism.
- Horizontal (2D) and vertical (1D) differential
 operators are decoupled.
- Spectral Element Method (SEM) in the horizontal direction.
- Eulerian or Lagrangian schemes for vertical operators.
- Solves for 4 prognostic variables (2 horizontal velocities, temperature, pressure), and the
 transport of N tracers (usually, $\mathrm{N} \sim 10-40$).

From HOMME to HOMMEXX

- Incremental conversion of original Fortran code to C++.
- Heavily tested ($\sim 85 \%$ of kernels are individually tested).
- Bit-for-bit agreement with original implementation.
- Minimization of architecture-specific code.
- Primary design goals:
- expose parallelism,
- maximize vectorization,
- minimize memory movement.

From HOMME to HOMMEXX

- Incremental conversion of original Fortran code to $\mathrm{C}++$.
- Heavily tested ($\sim 85 \%$ of kernels are individually tested).
- Bit-for-bit agreement with original implementation.
- Minimization of architecture-specific code.
- Primary design goals:
- expose parallelism,
- maximize vectorization,
- minimize memory movement.

HOMMEXX design: exposing parallelism

- HOMME has 3 layers of nested for loops: element(\times \# variables), GLL points, vertical levels.
- Elements and levels independently processed through majority of code.
- 2D differential operators couple GLL points.
- Kokkos supports up to 3 levels of hierarchical parallelism:
- team level: a parallel region over the number of teams (of threads)
- thread level: a parallel region over the number of threads in a team
- vector level: a parallel region over the number of vector lanes of a thread.
- Hierarchical parallelism allows to expose maximum parallelism with minimal index bookkeping.

HOMMEXX design: exposing parallelism

A simple nested loop:

```
for (int i=0; i<dim0; ++i) {
    for (int j=0; j<dim1; ++j) {
        for (int k=0; k<dim2; ++k) {
        // do some work on i,j,k
}}}
```


HOMMEXX design: exposing parallelism

A simple nested loop:

```
for (int i=0; i<dim0; ++i) {
    for (int j=0; j<dim1; ++j) {
        for (int k=0; k<dim2; ++k) {
        // do some work on i,j,k
}}}
```

Expose parallelism by flattening:
for (int idx $=0$; $i d x<\operatorname{dim} 0 * \operatorname{dim} 1 * \operatorname{dim} 2 ;++i d x)\{$
int $i=i d x /(\operatorname{dim} 1 * \operatorname{dim} 2)$;
int $j=i d x / \operatorname{dim} 2 ;$
int $k=i d x$ \% dim2;
// do some work on i, j, k
$\}$

HOMMEXX design: exposing parallelism

A simple nested loop:

```
for (int i=0; i<dim0; ++i) {
    for (int j=0; j<dim1; ++j) {
    for (int k=0; k<dim2; ++k) {
    // do some work on i,j,k
}}}
```

Expose parallelism by flattening:
for (int idx $=0$; idx $<\operatorname{dim} 0 * \operatorname{dim} 1 * \operatorname{dim} 2 ;++i d x)$ \{ int $\mathrm{i}=\mathrm{idx} /(\operatorname{dim} 1 * \operatorname{dim} 2)$; int $\mathrm{j}=\mathrm{idx} / \operatorname{dim} 2$; int $k=i d x$ \% dim2;
// do some work on i,j,k
\}
Embarassingly parallel.

HOMMEXX design: exposing parallelism

A more complex scenario: divergence on the sphere

```
for (int ie=0; ie<num_elements; ++ie) {
    for (int idx=0; idx <NP*NP; ++idx) {
    int i = idx / NP; int j = idx % NP;
    double v0 = v(ie,0,i,j); double v1 = v(ie,1,i,j);
    buf(0,i,j)=(J(0,0,i,j)*v0 + J (1,0,i,j)*v1)*metdet(i,j);
    buf(1,i,j) = (J (0,1,i,j)*v0 + J (1,1,i,j)*v1)*metdet(i,j);
    }
```

 for (int \(i d x=0 ; i d x<N P * N P ;+\operatorname{idx})\) \{
 int \(\mathrm{i}=\mathrm{idx} / \mathrm{NP}\); int \(\mathrm{j}=\mathrm{idx} \% \mathrm{NP}\);
 double dudx \(=0.0\), dvdy \(=0.0\);
 for (int \(k=0 ; k<N P ;++k)\{\)
 dudx \(+=\mathrm{D}(\mathrm{j}, \mathrm{k}) \quad * \operatorname{buf}(0, \mathrm{i}, \mathrm{k})\);
 dvdy \(+=\mathrm{D}(\mathrm{i}, \mathrm{k}) * \operatorname{buf}(1, \mathrm{k}, \mathrm{j})\);
 \}
 \(\operatorname{div}(\mathrm{ie}, \mathrm{i}, \mathrm{j})=(\operatorname{dudx}+\mathrm{dvd} y) /(\operatorname{metdet}(\mathrm{i}, \mathrm{j}) *\) rearth\() ;\)
 \}
 \}

HOMMEXX design: exposing parallelism

National

A more complex scenario: divergence on the sphere

```
for (int ie=0; ie<num_elements; ++ie) { & | over # teams
    for (int idx=0; idx<NP*NP; ++idx) {
    int i = idx / NP; int j = idx % NP;
    double v0 = v(ie,0,i,j); double v1 = v(ie,1,i,j);
    buf(0,i,j)=(J(0,0,i,j)*v0 + J (1,0,i,j)*v1)*metdet(i,j);
    buf(1,i,j) = (J (0,1,i,j)*v0 + J (1,1,i,j)*v1)*metdet(i,j);
    }
```

 for (int \(i d x=0 ; i d x<N P * N P ;+\operatorname{idx})\) \{
 int \(\mathrm{i}=\mathrm{idx} / \mathrm{NP}\); int \(\mathrm{j}=\mathrm{idx} \% \mathrm{NP}\);
 double dudx \(=0.0\), dvdy \(=0.0\);
 for (int \(k=0 ; k<N P ;++k)\{\)
 dudx \(+=\mathrm{D}(\mathrm{j}, \mathrm{k}) \quad * \operatorname{buf}(0, \mathrm{i}, \mathrm{k})\);
 dvdy \(+=\mathrm{D}(\mathrm{i}, \mathrm{k}) * \operatorname{buf}(1, \mathrm{k}, \mathrm{j})\);
 \}
 \(\operatorname{div}(\mathrm{ie}, \mathrm{i}, \mathrm{j})=(\operatorname{dudx}+\mathrm{dvd} y) /(\operatorname{metdet}(\mathrm{i}, \mathrm{j}) *\) rearth\() ;\)
 \}
 \}

A more complex scenario: divergence on the sphere for (int ie $=0$; ie<num_elements; + ie) $\{\leftarrow \|$ over \# teams for (int idx $=0 ; \quad$ idx $<N P * N P ;+\operatorname{idx})\{\longleftarrow \|$ over $\#$ threads int $\mathrm{i}=\mathrm{idx} / \mathrm{NP} ;$ int $\mathrm{j}=\mathrm{idx} \% \mathrm{NP} ; \quad$ in a team
double $\mathrm{v} 0=\mathrm{v}(\mathrm{ie}, 0, \mathrm{i}, \mathrm{j})$; double $\mathrm{v} 1=\mathrm{v}(\mathrm{ie}, 1, \mathrm{i}, \mathrm{j})$;
$\operatorname{buf}(0, i, j)=(J(0,0, i, j) * v 0+J(1,0, i, j) * v 1) * \operatorname{metdet}(i, j)$; $\operatorname{buf}(1, \mathrm{i}, \mathrm{j})=(\mathrm{J}(0,1, \mathrm{i}, \mathrm{j}) * \mathrm{v} 0+\mathrm{J}(1,1, \mathrm{i}, \mathrm{j}) * \mathrm{v} 1) * \operatorname{metdet}(\mathrm{i}, \mathrm{j})$; \}
for (int $\mathrm{idx}=0 ; \quad \mathrm{idx}<\mathrm{NP} * \mathrm{NP} ;+\mathrm{idx})\{\longleftarrow \|$ over \# threads
int $\mathrm{i}=\mathrm{idx} / \mathrm{NP} ;$ int $\mathrm{j}=\mathrm{idx} \% \mathrm{NP} ; \quad$ in a team
double dudx $=0.0$, dvdy $=0.0$;
for (int $k=0 ; k<N P ;++k)\{$
dudx $+=\mathrm{D}(\mathrm{j}, \mathrm{k}) * \operatorname{buf}(0, \mathrm{i}, \mathrm{k})$;
dvdy $+=\mathrm{D}(\mathrm{i}, \mathrm{k}) \quad * \operatorname{buf}(1, \mathrm{k}, \mathrm{j})$;
\}
$\operatorname{div}($ ie $, \mathrm{i}, \mathrm{j})=(\operatorname{dudx}+\mathrm{dvd} y) /(\operatorname{metdet}(\mathrm{i}, \mathrm{j}) *$ rearth $) ;$ \}
\}

HOMMEXX design: exposing parallelism

A more complex scenario: divergence on the sphere for (int ie $=0$; ie $<$ num_elements; + ie) $\{\leftarrow \|$ over \# teams for (int idx $=0$; idx $<\mathrm{NP} * \mathrm{NP} ;+\operatorname{idx}$) \{ $\longleftarrow \|$ over \# threads
int $\mathrm{i}=\mathrm{idx} / \mathrm{NP} ;$ int $\mathrm{j}=\mathrm{idx} \% \mathrm{NP}$; in a team
double $\mathrm{v} 0=\mathrm{v}(\mathrm{ie}, 0, \mathrm{i}, \mathrm{j})$; double $\mathrm{v} 1=\mathrm{v}(\mathrm{ie}, 1, \mathrm{i}, \mathrm{j})$;
buf $(0, \mathrm{i}, \mathrm{j})=(\mathrm{J}(0,0, \mathrm{i}, \mathrm{j}) * \mathrm{v} 0+\mathrm{J}(1,0, \mathrm{i}, \mathrm{j}) * \mathrm{v} 1) * \operatorname{metdet}(\mathrm{i}, \mathrm{j})$; buf $(1, \mathrm{i}, \mathrm{j})=(\mathrm{J}(0,1, \mathrm{i}, \mathrm{j}) * \mathrm{v} 0+\mathrm{J}(1,1, \mathrm{i}, \mathrm{j}) * \mathrm{v} 1) * \operatorname{metdet}(\mathrm{i}, \mathrm{j}) ;$ \} team barrier
for (int $\mathrm{idx}=0 ; \mathrm{idx} \leqslant \mathrm{NP} * \mathrm{NP} ;+\mathrm{idx})\{\longleftarrow \|$ over \# threads
int $\mathrm{i}=\mathrm{idx} / \mathrm{NP} ;$ int $\dot{j}=\mathrm{idx} \% \mathrm{NP} ; \quad$ in a team
double dudx $=0.0$, dvdy $=-0$;
for (int $k=0 ; k<N P ;++k)$
dudx $+=\mathrm{D}(\mathrm{j}, \mathrm{k}) * \operatorname{buf}(0, \mathrm{i}, \mathrm{k}) ;>$ shared within team
dvdy $+=D(i, k) * b u f\left(k+\frac{k, j}{}\right)$;
\}
$\operatorname{div}(\mathrm{ie}, \mathrm{i}, \mathrm{j})=(\operatorname{dudx}+\mathrm{dvd} y) /(\operatorname{metdet}(\mathrm{i}, \mathrm{j}) *$ rearth$) ;$
\}
\}

- Core data type is a packed (Vector) of N doubles.
- On CPU, N varies: KNL/SKX N=8, HSW N=4.
- On GPUs, N=1 (no SIMD, only SIMT).
- Vectorization via call to compiler intrinsics.

Two natural choices for vectorization: GLL points and vertical levels. But:

- 2D differential operator much more frequent than 1D vertical integrals, and

- matching N with \# vertical level feasible, while matching N with \# of GLL point could become prohibitive.
\Rightarrow Vectoriation over vertical levels (and data laid out accordingly in memory).

Results: tested architectures

(IB) Intel Ivy Bridge: 2 sockets/node, 12 cores/socket, 2 threads/core, DDR3 (HSW) Intel Haswell: 2 sockets/node, 16 cores/socket, 2 threads/core, DDR4 (KNL) Intel Xeon Phi: 68 cores/node, 4 threads/core, HBM+DDR4 (SKX) Intel Skylake: 2 sockets/node, 24 cores/socket, 2 threads/core, DDR4 (P9) IBM Power9: 2 sockets/node, 10 cores/socket, 4 threads/core, DDR4 (P100) NVidia Pascal: 2 sockets/node, 2 GPUs/socket, 1792 DP cores/GPU (V100) NVidia Volta: 2 sockets/node, 2 GPUs/socket, 2560 DP cores/GPU

Note: IB, HSW and KNL tested at large scale, SKX, P100, V100, P9 only available on testbeds.

Results: strong scaling at large scale

Power consumption (at high workload):

- IB: 260W
- HSW: 360W
- KNL: 260W
- SKX: 330W
- P9: 360W (?)
- P100: 190W
- V100: 200W

Power consumption (at high workload):

- IB: 260W
- HSW: 360W
- KNL: 260W
- SKX: 330W
- P9: 360W (?)
- P100: 190W
- V100: 200W
- With Kokkos, HOMMEXX can run on multiple architectures with a (mostly) single implementation.
- HOMMEXX slightly faster than HOMME on CPU/MIC ($\sim 1.1 \times$ on HSW, and up to $1.4 \times$ on KNL).
- Reasonable performance on GPUs. Need to test performance with NVLink 2.0.
- Skylake-like architectures could become very interesting for E3SM.
- C++ and Kokkos is a viable path to achieve a performance portable code.

