Computation matters less than communication and memory

Greg Astfalk International Computing for the Atmospheric Sciences Symposium (iCAS2015) September 15, 2015

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Outline

- In this talk (I have 30 minutes, but need 3 hours) we'll quickly cover:
 - Performance shortcomings
 - Communication problems
 - Memory problems

Take-away "sound bites" for this talk

- In most high-end applications today we do not have a computation problem, we have a memory problem, and/or a communication problem
- The industry has spent years and many dollars engineering solutions to the wrong problem, that of increasing peak FLOPS
- Going forward we need to shift to focus on, and solve, the more critical problems; communications and memory

Computation

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Performance

- A well known, seldom discussed, topic is application delivered performance as a percentage of peak
 - Single node 8-20%
 - Multi node 2–10%
- What we have done over history to solve this has been to increase the peak {FLOPS | OPS}
 - This has not helped (much)
- What we need are systems which have better performance/memory balance
 - More on a later slide

Performance vs. Moore's Law (1 of 2)

- No universal metric for measuring computer performance
- SPECint benchmark is a good proxy for a variety of applications
- Since 2003 the increasing number of transistors are not providing commensurate performance benefit

Performance vs. Moore's Law (2 of 2)

- If your interest is in floating-point performance, consider the SPECfp benchmark
 - Same issue
 - More performance potential that we don't get

Application signatures (your mileage may vary)

- For tuned "physics" codes
 - Only about 30% of instructions are floating-point
 - Majority of "vector" instructions are of length 1
 - Branches, "other", and memory operations are the majority

Code performance

- For the WRF code[†]
 - The 12km CONUS benchmark from 2010 to 2014
 - $\,\circ\,$ Performance advanced from 22 to 44 Gflops
 - \circ Percent of peak declined from 16% to 4%
 - Memory bandwidth is at peak for 13% of execution

Communication

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Data communications characteristics

- The key characteristics we are concerned with are:
 - Latency
 - Bandwidth
 - Energy per bit
 - "Reach"
- Each of these needs improvement

Data communications characteristics

- Transistors are getting faster
- Communication is getting slower

Communication energies

- Caveat: This data is FAR more complex than it may seem
 - Each of the 4 data cells requires a long explanation/discussion
 - The data are considering what it will be like 4–5 years from now

Energies, pJoules		
Reach	Electronics	Photonics
10 centimeters	25	~3
100 meters	<i>C</i> (10 ⁴)	<i>€</i> (10¹)

Compute and communication energies

- More energy to move data than to compute on it
 - Computation almost feels "free" relative to communication
 - Time will make this worse

Operation	Energy (pJ)
64-bit integer operation	1
64-bit floating-point operation	20
256 bit on-die SRAM access	50
256 bit bus transfer (short)	26
256 bit bus transfer (1/2 die)	256
Off-die link (efficient)	500
256 bit bus transfer(across die)	1,000
DRAM read/write (512 bits)	16,000
HDD read/write	 𝔅(10⁶)

28nm CMOS, DDR3

What's needed

- Use silicon nanophotonics rather than copper and electrons
 - CMOS scale
 - CMOS cost curve
 - DWDM
 - Greater bits per unit time per unit of cross-sectional area or die edge
 - Distance invariance and reduced energy per bit
- Continue R&D to reduce the threshold length-scale for photonics to $\mathcal{O}(1)$ millimeter
 - We're almost there

Memory

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

The issue

- Memory is the biggest performance issue today
- Why?
 - Has fallen way behind processors wrt bandwidth and capacity
 - It is not rapidly innovating
 - Must change the entire memory subsystem all at once
- Good news
 - We're getting close to fixing it

Old news

- My advocating for memory is not new
 - "...the real difficulty, the main bottleneck, of an automatic very high speed computing device lies: At the memory..."
 - John von Neumann in 1945

Balance and percent of peak

- Systems that have better "balance", bytes/FLOP, deliver a greater percentage of peak
- Yes, it is as obvious as it seems

(Lack of) Balance over time

- There was a time in the past when there were systems with good balance
- Sadly there aren't any such systems any longer

DRAM commonalities

- During DRAM's entire existence, 40+ years, there have been three immutable constants
 - It is volatile
 - It has been treated as a limited, expensive resource
 - It uses a lot of pins (~150 per channel)
- For the past ~22 years another commonality is that "DDR" and DRAM have been in a synergistic, interdependent embrace
 - This is good, but mostly bad

IBM 8 Mbit core circa 1968

DRAM

- DRAM is approaching its end of life or end of scaling
 - Does not mean it won't be made and sold
 - Capacity, efficiency, and cost/bit will plateau (or get worse)
- Something will replace DRAM
 - Almost certainly it will be nonvolatile memory (NVM)
 - The transition to NVM will be very long-tailed
 - DRAM in 2020+?
 - Certainly

Memory capacity today

- Memory capacity is dictated by
 - Number of DDR channels
 - Capacity of DRAM parts
 - Number of DIMMs
- Sockets are pin limited (and will remain so) hence the maximum number of DDR channels per socket is ~6 (4 is more common)
- Number of DIMMs per channel is limited to ≤ 4
 - Each additional DIMM causes the DDR channel to run at lower frequency
 - Forces a trade-off of capacity for performance, or vice versa

Desired/target NVM characteristics

- What we may expect from NVM (not the first generation) when compared to DRAM
 - Price per bit ~(1/10)
 - Bits per die >8x (for same size die!)
 - Energy per bit <(1/2)</p>
 - Static power <(1/10)</p>
 - Read latency <2x</p>
 - Write latency <4x (but mostly hidden)

Memory-semantics (everywhere?)

- Just beginning to contemplate the extensive use of memory-semantics
 - The processor only emits ld/st requests
 - Fewer busses from the processor
 - Saves pins (i.e., power, cost, and silicon real estate)
- NICs and HDD/SDD devices will exist for a long time
 - Will, hopefully, exist at the end of a memory-semantic channel

Physical address spaces

- Today's physical memory is measured in Gigabytes (2³⁰)
 - End-users think, design, and code accordingly
- Tomorrow's physical memory will be Terabytes (2⁴⁰)
 - Contemplate "storage" in the address space
 - Rethink algorithms and data structures
- (Tomorrow+ ϵ)'s physical memory can be Petabytes (2⁵⁰)
 - Eliminate all i/o operations, except archiving

What needs to change?

Today

Tomorrow

The remedy

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Epilogue

- Shift R&D from FLOPS and OPS to communications and memory
 - Load/store semantics everywhere
 - New memory PHY and protocol
 - Transition to NVM
 - More physical address bits
 - Silicon nanophotonics, with DWDM

